Beatty sequences and multiplicative number theory
Abercrombie Alex G.
Acta Arithmetica, Tome 69 (1995), p. 195-207 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206748
@article{bwmeta1.element.bwnjournal-article-aav70i3p195bwm,
     author = {Abercrombie Alex G.},
     title = {Beatty sequences and multiplicative number theory},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {195-207},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav70i3p195bwm}
}
Abercrombie Alex G. Beatty sequences and multiplicative number theory. Acta Arithmetica, Tome 69 (1995) pp. 195-207. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav70i3p195bwm/

[00000] [1] S. D. Chowla, Some problems of Diophantine approximation I, Math. Z. 33 (1931), 544-563.

[00001] [2] W. J. Ellison (with M. Mendès France), Les Nombres Premiers, Hermann, 1975.

[00002] [3] S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, London Math. Soc. Lecture Note Ser. 126, Cambridge University Press, 1991.

[00003] [4] D. R. Heath-Brown, The fourth power moment of the Riemann zeta function, Proc. London Math. Soc. (3) 38 (1979), 385-422.

[00004] [5] E. Hlawka, The Theory of Uniform Distribution, AB Academic Publishers, 1984.

[00005] [6] L.-K. Hua, Introduction to Number Theory, Springer, 1982.

[00006] [7] S. Lang, Introduction to Diophantine Approximation, Addison-Wesley, 1966.

[00007] [8] H. A. Porta and K. B. Stolarsky, Wythoff pairs as semigroup invariants, Adv. in Math. 85 (1991), 69-82

[00008] [9] S. Ramanujan, Some formulae in the analytic theory of numbers, Messenger of Math. 45 (1916), 81-84.

[00009] [10] J. D. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. 12 (1985), 183-216.