What is the structure of a pair of finite integers sets A,B ⊂ ℤ with the small value of |A+B|? We answer this question for addition coefficient 3. The obtained theorem sharpens the corresponding results of G. Freiman.
@article{bwmeta1.element.bwnjournal-article-aav70i1p85bwm, author = {Vsevolod F. Lev and Pavel Y. Smeliansky}, title = {On addition of two distinct sets of integers}, journal = {Acta Arithmetica}, volume = {69}, year = {1995}, pages = {85-91}, zbl = {0817.11005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav70i1p85bwm} }
Vsevolod F. Lev; Pavel Y. Smeliansky. On addition of two distinct sets of integers. Acta Arithmetica, Tome 69 (1995) pp. 85-91. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav70i1p85bwm/
[000] [1] G. Freiman, On addition of finite sets, I, Izv. Vyssh. Uchebn. Zaved. Mat. 1959 (6), 202-213. | Zbl 0096.25904
[001] [2] G. Freiman, Inverse problems of additive number theory, VI. On addition of finite sets, III, Izv. Vyssh. Uchebn. Zaved. Mat. 1962 (3), 151-157. | Zbl 0156.05102
[002] [3] M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z. 58 (1953), 459-484. | Zbl 0051.28104
[003] [4] M. Kneser, Ein Satz über abelschen Gruppen mit Anwendungen auf die Geometrie der Zahlen, Math. Z. 61 (1955), 429-434. | Zbl 0064.04305
[004] [5] J. Steinig, On Freiman's theorems concerning the sum of two finite sets of integers, in: Preprints of the conference on Structure Theory of Set Addition, CIRM, Marseille, 1993, 173-186.