The Iwasawa λ-invariants of ℤₚ-extensions of real quadratic fields
Takashi Fukuda ; Hisao Taya
Acta Arithmetica, Tome 69 (1995), p. 277-292 / Harvested from The Polish Digital Mathematics Library

1. Introduction. Let k be a totally real number field. Let p be a fixed prime number and ℤₚ the ring of all p-adic integers. We denote by λ=λₚ(k), μ=μₚ(k) and ν=νₚ(k) the Iwasawa invariants of the cyclotomic ℤₚ-extension k of k for p (cf. [10]). Then Greenberg’s conjecture states that both λₚ(k) and μₚ(k) always vanish (cf. [8]). In other words, the order of the p-primary part of the ideal class group of kₙ remains bounded as n tends to infinity, where kₙ is the nth layer of k/k. We know by the Ferrero-Washington theorem (cf. [2], [15]) that μₚ(k) always vanishes when k is an abelian (not necessarily totally real) number field. However, the conjecture remains unsolved up to now except for some special cases (cf. [1], [3], [5]-[8], [13]). This paper is a continuation of our previous papers [3], [5]-[7] and [12], that is to say, we investigate Greenberg’s conjecture when k is a real quadratic field and p is an odd prime number which splits in k. The purpose of this paper is to extend our previous results, and to give basic numerical data of k=ℚ(√m) for 0 ≤ m ≤ 10000 and p=3. On the basis of these data, we can verify Greenberg’s conjecture for most of these k’s.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206688
@article{bwmeta1.element.bwnjournal-article-aav69i3p277bwm,
     author = {Takashi Fukuda and Hisao Taya},
     title = {The Iwasawa l-invariants of Zp-extensions of real quadratic fields},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {277-292},
     zbl = {0828.11060},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav69i3p277bwm}
}
Takashi Fukuda; Hisao Taya. The Iwasawa λ-invariants of ℤₚ-extensions of real quadratic fields. Acta Arithmetica, Tome 69 (1995) pp. 277-292. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav69i3p277bwm/

[000] [1] A. Candiotti, Computations of Iwasawa invariants and K₂, Compositio Math. 29 (1974), 89-111. | Zbl 0364.12003

[001] [2] B. Ferrero and L. C. Washington, The Iwasawa invariant μₚ vanishes for abelian number fields, Ann. of Math. 109 (1979), 377-395. | Zbl 0443.12001

[002] [3] T. Fukuda, Iwasawa λ-invariants of certain real quadratic fields, Proc. Japan Acad. 65A (1989), 260-262. | Zbl 0703.11055

[003] [4] T. Fukuda, Iwasawa λ-invariants of imaginary quadratic fields, J. College Industrial Technology Nihon Univ. 27 (1994), 35-88. (Corrigendum; to appear J. College Industrial Technology Nihon Univ.)

[004] [5] T. Fukuda and K. Komatsu, On the λ invariants of ℤₚ-extensions of real quadratic fields, J. Number Theory 23 (1986), 238-242. | Zbl 0593.12003

[005] [6] T. Fukuda and K. Komatsu, On ℤₚ-extensions of real quadratic fields, J. Math. Soc. Japan 38 (1986), 95-102. | Zbl 0588.12004

[006] [7] T. Fukuda, K. Komatsu and H. Wada, A remark on the λ-invariants of real quadratic fields, Proc. Japan Acad. 62A (1986), 318-319. | Zbl 0612.12004

[007] [8] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284. | Zbl 0334.12013

[008] [9] R. Greenberg, On p-adic L-functions and cyclotomic fields II, Nagoya Math. J. 67 (1977), 139-158. | Zbl 0373.12007

[009] [10] K. Iwasawa, On l-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326. | Zbl 0285.12008

[010] [11] S. Mäki, The determination of units in real cyclic sextic fields, Lecture Notes in Math. 797, Springer, Berlin, 1980. | Zbl 0423.12006

[011] [12] H. Taya, On the Iwasawa λ-invariants of real quadratic fields, Tokyo J. Math. 16 (1993), 121-130. | Zbl 0797.11084

[012] [13] H. Taya, Computation of ℤ₃-invariants of real quadratic fields, preprint series, Waseda Univ. Technical Report No. 93-13, 1993.

[013] [14] H. Wada and M. Saito, A table of ideal class groups of imaginary quadratic fields, Sophia Kôkyuroku in Math. 28, Depart. of Math., Sophia Univ. Tokyo, 1988. | Zbl 0629.12003

[014] [15] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer, New York, 1982.

[015] [16] H. Yokoi, On the class number of a relatively cyclic number field, Nagoya Math. J. 29 (1967), 31-44. | Zbl 0166.05803