Independence of solution sets and minimal asymptotic bases
Paul Erdős ; Melvyn B. Nathanson ; Prasad Tetali
Acta Arithmetica, Tome 69 (1995), p. 243-258 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206686
@article{bwmeta1.element.bwnjournal-article-aav69i3p243bwm,
     author = {Paul Erd\H os and Melvyn B. Nathanson and Prasad Tetali},
     title = {Independence of solution sets and minimal asymptotic bases},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {243-258},
     zbl = {0828.11006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav69i3p243bwm}
}
Paul Erdős; Melvyn B. Nathanson; Prasad Tetali. Independence of solution sets and minimal asymptotic bases. Acta Arithmetica, Tome 69 (1995) pp. 243-258. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav69i3p243bwm/

[000] [1] P. Erdős and M. B. Nathanson, Oscillations of bases for the natural numbers, Proc. Amer. Math. Soc. 53 (1975), 253-258. | Zbl 0319.10066

[001] [2] P. Erdős and M. B. Nathanson, Independence of solution sets in additive number theory, in: Probability, Statistical Mechanics, and Number Theory, G.-C. Rota (ed.), Adv. Math. Suppl. Stud. 9 (1986), 97-105.

[002] [3] P. Erdős and M. B. Nathanson, Systems of distinct representatives and minimal bases in additive number theory, in: Number Theory, Carbondale 1979, M. B. Nathanson (ed.), Lecture Notes in Math. 751, Springer, Heidelberg, 1979, 89-107.

[003] [4] P. Erdős and M. B. Nathanson, Problems and results on minimal bases in additive number theory, in: Number Theory, New York 1985-86, D. V. Chudnovsky, G. V. Chudnovsky, H. Cohn, and M. B. Nathanson (eds.), Lecture Notes in Math. 1240, Springer, Heidelberg, 1987, 87-96.

[004] [5] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90. | Zbl 0103.27901

[005] [6] P. Erdős and A. Rényi, Additive properties of random sequences of positive integers, Acta Arith. 6 (1960), 83-110. | Zbl 0091.04401

[006] [7] P. Erdős and P. Tetali, Representations of integers as the sum of k terms, Random Structures and Algorithms 1 (1990), 245-261. | Zbl 0725.11007

[007] [8] H. Halberstam and K. F. Roth, Sequences, Springer, Heidelberg, 1983.

[008] [9] X.-D. Jia, Simultaneous systems of representatives for finite families of finite sets, Proc. Amer. Math. Soc. 104 (1988), 33-36. | Zbl 0662.10041

[009] [10] M. B. Nathanson, Simultaneous systems of representatives for families of finite sets, Proc. Amer. Math. Soc. 103 (1988), 1322-1326. | Zbl 0709.05006