@article{bwmeta1.element.bwnjournal-article-aav69i2p193bwm, author = {J\"urgen Eichenauer-Herrmann and Harald Niederreiter}, title = {An improved upper bound for the discrepancy of quadratic congruential pseudorandom numbers}, journal = {Acta Arithmetica}, volume = {69}, year = {1995}, pages = {193-198}, zbl = {0817.11038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav69i2p193bwm} }
Jürgen Eichenauer-Herrmann; Harald Niederreiter. An improved upper bound for the discrepancy of quadratic congruential pseudorandom numbers. Acta Arithmetica, Tome 69 (1995) pp. 193-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav69i2p193bwm/
[000] [1] J. Eichenauer-Herrmann, Inversive congruential pseudorandom numbers: a tutorial, Internat. Statist. Rev. 60 (1992), 167-176. | Zbl 0766.65002
[001] [2] J. Eichenauer-Herrmann, Inversive congruential pseudorandom numbers, Z. Angew. Math. Mech. 73 (1993), T644-T647.
[002] [3] J. Eichenauer-Herrmann, Pseudorandom number generation by nonlinear methods, Internat. Statist. Rev., to appear.
[003] [4] J. Eichenauer-Herrmann and H. Niederreiter, On the discrepancy of quadratic congruential pseudorandom numbers, J. Comput. Appl. Math. 34 (1991), 243-249. | Zbl 0731.11046
[004] [5] J. Kiefer, On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm, Pacific J. Math. 11 (1961), 649-660. | Zbl 0119.34904
[005] [6] D. E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms , 2nd ed., Addison-Wesley, Reading, Mass., 1981. | Zbl 0477.65002
[006] [7] H. Niederreiter, Recent trends in random number and random vector generation, Ann. Oper. Res. 31 (1991), 323-345. | Zbl 0737.65001
[007] [8] H. Niederreiter, Nonlinear methods for pseudorandom number and vector generation, in: Simulation and Optimization, G. Pflug and U. Dieter (eds.), Lecture Notes in Econom. and Math. Systems 374, Springer, Berlin, 1992, 145-153. | Zbl 0849.11055
[008] [9] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, Penn., 1992.
[009] [10] H. Niederreiter, Pseudorandom numbers and quasirandom points, Z. Angew. Math. Mech. 73 (1993), T648-T652 | Zbl 0796.11028