Cyclotomic numbers of order 2l, l an odd prime
Vinaykumar V. Acharya ; S. A. Katre
Acta Arithmetica, Tome 69 (1995), p. 51-74 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206672
@article{bwmeta1.element.bwnjournal-article-aav69i1p51bwm,
     author = {Vinaykumar V. Acharya and S. A. Katre},
     title = {Cyclotomic numbers of order 2l, l an odd prime},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {51-74},
     zbl = {0813.11067},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav69i1p51bwm}
}
Vinaykumar V. Acharya; S. A. Katre. Cyclotomic numbers of order 2l, l an odd prime. Acta Arithmetica, Tome 69 (1995) pp. 51-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav69i1p51bwm/

[000] [1] B. C. Berndt and R. J. Evans, Sums of Gauss, Eisenstein, Jacobi, Jacobsthal and Brewer, Illinois J. Math. 23 (1979), 374-437.

[001] [2] N. Buck and K. S. Williams, Sequel to Muskat's evaluation of the cyclotomic numbers of order fourteen, Carleton Mathematical Series 216, November 1985, Carleton University, Ottawa, 22 pp.

[002] [3] L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, Amer. J. Math. 57 (1935), 391-424. | Zbl 0012.01203

[003] [4] L. E. Dickson, Cyclotomy and trinomial congruences, Trans. Amer. Math. Soc. 37 (1935), 363-380. | Zbl 0011.29301

[004] [5] M. Hall, Cyclotomy and characters, in: Proc. Sympos. Pure Math. 8, Amer. Math. Soc., 1965, 31-43.

[005] [6] S. A. Katre and A. R. Rajwade, Complete solution of the cyclotomic problem in *q for any prime modulus l, q=pα, p≡ 1 (mod l), Acta Arith. 45 (1985), 183-199. | Zbl 0525.12015

[006] [7] S. A. Katre and A. R. Rajwade, Resolution of the sign ambiguity in the determination of the cyclotomic numbers of order 4 and the corresponding Jacobsthal sum, Math. Scand. 60 (1987), 52-62. | Zbl 0602.12005

[007] [8] J. B. Muskat, The cyclotomic numbers of order fourteen, Acta Arith. 11 (1966), 263-279. | Zbl 0139.28101

[008] [9] J. C. Parnami, M. K. Agrawal and A. R. Rajwade, Jacobi sums and cyclotomic numbers for a finite field, Acta Arith. 41 (1982), 1-13. | Zbl 0491.12019

[009] [10] T. Storer, On the unique determination of the cyclotomic numbers for Galois fields and Galois domains, J. Combin. Theory 2 (1967), 296-300. | Zbl 0154.04903

[010] [11] A. L. Whiteman, Cyclotomic numbers of order 10, in: Proc. Sympos. Appl. Math. 10, Amer. Math. Soc., 1960, 95-111.

[011] [12] Y. C. Zee, Jacobi sums of order 22, Proc. Amer. Math. Soc. 28 (1971), 25-31 | Zbl 0213.32901