@article{bwmeta1.element.bwnjournal-article-aav69i1p21bwm, author = {A. Sankaranarayanan}, title = {Zeros of quadratic zeta-functions on the critical line}, journal = {Acta Arithmetica}, volume = {69}, year = {1995}, pages = {21-38}, zbl = {0819.11032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav69i1p21bwm} }
A. Sankaranarayanan. Zeros of quadratic zeta-functions on the critical line. Acta Arithmetica, Tome 69 (1995) pp. 21-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav69i1p21bwm/
[000] [1] R. Balasubramanian, An improvement of a theorem of Titchmarsh on the mean square of |ζ(1/2 +it)|, Proc. London Math. Soc. (3) 36 (1978), 540-576. | Zbl 0375.10025
[001] [2] R. Balasubramanian and K. Ramachandra, Proof of some conjectures on the mean-value of Titchmarsh series. I, Hardy-Ramanujan J. 13 (1990), 1-20. | Zbl 0733.11027
[002] [3] B. C. Berndt, The number of zeros of the Dedekind zeta-function on the critical line, J. Number Theory 3 (1971), 1-6. | Zbl 0208.31102
[003] [4] K. Chandrasekharan and R. Narasimhan, Zeta-functions of ideal classes in quadratic fields and their zeros on the critical line, Comment. Math. Helv. 43 (1968), 18-30. | Zbl 0157.09302
[004] [5] E. Hecke, Über Dirichlet-Reihen mit Funktionalgleichung und ihre Nullstellen auf der Mittelgeraden, München Akad. Sitzungsber. II, 8 (1937), 73-95. | Zbl 0018.21002
[005] [6] E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), 664-699. | Zbl 0014.01601
[006] [7] E. Landau, Vorlesungen über Zahlentheorie, VII. Teil, Kap. 7, Chelsea, 1947.
[007] [8] H. S. A. Potter, Approximate equations for the Epstein zeta-function, Proc. London Math. Soc. (2) 36 (1934), 501-515. | Zbl 0008.30001
[008] [9] H. S. A. Potter and E. C. Titchmarsh, The zeros of Epstein's zeta-functions, Proc. London Math. Soc. 39 (1935), 372-384. | Zbl 0011.39101
[009] [10] K. Ramachandra, Progress towards a conjecture on the mean-value of Titchmarsh series, in: Recent Progress in Analytic Number Theory, H. Halberstam and C. Hooley (eds.), Vol. 1, Academic Press, 1981, 303-318.
[010] [11] H. M. Stark, L-functions and character sums for quadratic forms (I), Acta Arith. 14 (1968), 35-50. | Zbl 0198.37801
[011] [12] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., revised by D. R. Heath-Brown, Oxford Sci. Publ., Clarendon Press, Oxford, 1986. | Zbl 0601.10026