Mean square limit for lattice points in a sphere
Pavel M. Bleher ; Freeman J. Dyson
Acta Arithmetica, Tome 68 (1994), p. 383-393 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:206667
@article{bwmeta1.element.bwnjournal-article-aav68i4p383bwm,
     author = {Pavel M. Bleher and Freeman J. Dyson},
     title = {Mean square limit for lattice points in a sphere},
     journal = {Acta Arithmetica},
     volume = {68},
     year = {1994},
     pages = {383-393},
     zbl = {0915.11047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav68i4p383bwm}
}
Pavel M. Bleher; Freeman J. Dyson. Mean square limit for lattice points in a sphere. Acta Arithmetica, Tome 68 (1994) pp. 383-393. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav68i4p383bwm/

[000] [AP] S. D. Adhikari and Y.-F. S. Pétermann, Lattice points in ellipsoids, Acta Arith. 59 (1991), 329-338. | Zbl 0705.11056

[001] [Ble1] P. M. Bleher, On the distribution of the number of lattice points inside a family of convex ovals, Duke Math. J. 67 (1992), 461-481. | Zbl 0762.11031

[002] [Ble2] P. M. Bleher, Distribution of energy levels of a quantum free particle on a surface of revolution, Duke Math. J. 74 (1994), 45-93.

[003] [BCDL] P. M. Bleher, Z. Cheng, F. J. Dyson and J. L. Lebowitz, Distribution of the error term for the number of lattice points inside a shifted circle, Comm. Math. Phys. 154 (1993), 433-469. | Zbl 0781.11038

[004] [BK] M. N. Bleicher and M. I. Knopp, Lattice points in a sphere, Acta Arith. 10 (1965), 369-376. | Zbl 0131.04701

[005] [CI] F. Chamizo and H. Iwaniec, A 3-dimensional lattice point problem, in preparation.

[006] [CN] K. Chandrasekharan and R. Narasimhan, Hecke's functional equation and the average order of arithmetical functions, Acta Arith. 6 (1961), 487-503. | Zbl 0101.03703

[007] [Che] J.-R. Chen, Improvement on the asymptotic formulas for the number of lattice points in a region of the three dimensions (II), Sci. Sinica 12 (1963), 751-764. | Zbl 0127.27503

[008] [Cra] H. Cramér, Über zwei Sätze von Herrn G. H. Hardy, Math. Z. 15 (1922), 201-210.

[009] [Gro] E. Grosswald, Representations of Integers as Sums of Squares, Springer, New York, 1985. | Zbl 0574.10045

[010] [HL] G. H. Hardy and J. E. Littlewood, Tauberian theorems concerning power series and Dirichlet series whose coefficients are positive, Proc. London Math. Soc. 13 (1914), 174. | Zbl 45.0389.02

[011] [H-B] D. R. Heath-Brown, The distribution and moments of the error term in the Dirichlet divisor problem, Acta Arith. 60 (1992), 389-415. | Zbl 0725.11045

[012] [KN] E. Krätzel and W. G. Nowak, Lattice points in large convex bodies, II, Acta Arith. 62 (1992), 285-295. | Zbl 0769.11037

[013] [Lan1] E. Landau, Vorlesungen über Zahlentheorie, V. 1, Hirzel, Leipzig, 1927.

[014] [Lan2] E. Landau, Ausgewählte Abhandlungen zur Gitterpunktlehre, A. Walfisz (ed.), Deutscher Verlag der Wiss., Berlin, 1962.

[015] [Now] W. G. Nowak, On the lattice rest of a convex body in s, II, Arch. Math. (Basel) 47 (1986), 232-237.

[016] [Ran] B. Randol, A lattice point problem, I, II, Trans. Amer. Math. Soc. 121 (1966), 257-268; 125 (1966), 101-113.

[017] [Sze] G. Szegö, Beiträge zur Theorie der Laguerreschen Polynome. II: Zahlentheoretische Anwendungen, Math. Z. 25 (1926), 388-404. | Zbl 52.0175.03

[018] [Vau] R. C. Vaughan, The Hardy-Littlewood Method, Cambridge University Press, Cambridge, 1981.

[019] [Vin1] I. M. Vinogradov, On the number of integral points in a given domain, Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 777-786.

[020] [Vin2] I. M. Vinogradov, On the number of integral points in a sphere, Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963), 957-968.

[021] [Wal] A. Walfisz, Gitterpunkte in mehrdimensionalen Kugeln, PWN, Warszawa, 1957.