@article{bwmeta1.element.bwnjournal-article-aav68i2p145bwm, author = {A. Rotkiewicz}, title = {On strong Lehmer pseudoprimes in the case of negative discriminant in arithmetic progressions}, journal = {Acta Arithmetica}, volume = {68}, year = {1994}, pages = {145-151}, zbl = {0822.11016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav68i2p145bwm} }
A. Rotkiewicz. On strong Lehmer pseudoprimes in the case of negative discriminant in arithmetic progressions. Acta Arithmetica, Tome 68 (1994) pp. 145-151. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav68i2p145bwm/
[000] [1] L. K. Durst, Exceptional real Lehmer sequences, Pacific J. Math. 9 (1959), 437-441. | Zbl 0091.04204
[001] [2] D. H. Lehmer, An extended theory of Lucas functions, Ann. of Math. (2) 31 (1930), 419-448. | Zbl 56.0874.04
[002] [3] A. Rotkiewicz, On the pseudoprimes of the form ax+b with respect to the sequence of Lehmer, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 349-354. | Zbl 0249.10012
[003] [4] A. Rotkiewicz, On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L, Q in arithmetic progressions, Math. Comp. 39 (1982), 239-247. | Zbl 0492.10002
[004] [5] A. Schinzel, The intrinsic divisors of Lehmer numbers in the case of negative discriminant, Ark. Mat. 4 (1962), 413-416. | Zbl 0106.03105
[005] [6] C. L. Stewart, Primitive divisors of Lucas and Lehmer numbers, in: Transcendence Theory: Advances and Applications, Academic Press, 1977, 79-92.
[006] [7] M. Ward, The intrinsic divisors of Lehmer numbers, Ann. of Math. (2) 62 (1955), 230-236. | Zbl 0065.27102