Upper bounds for class numbers of real quadratic fields
Maohua Le
Acta Arithmetica, Tome 68 (1994), p. 141-144 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:206650
@article{bwmeta1.element.bwnjournal-article-aav68i2p141bwm,
     author = {Maohua Le},
     title = {Upper bounds for class numbers of real quadratic fields},
     journal = {Acta Arithmetica},
     volume = {68},
     year = {1994},
     pages = {141-144},
     zbl = {0816.11055},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav68i2p141bwm}
}
Maohua Le. Upper bounds for class numbers of real quadratic fields. Acta Arithmetica, Tome 68 (1994) pp. 141-144. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav68i2p141bwm/

[000] [1] T. Agoh, A note on unit and class number of real quadratic fields, Acta Math. Sinica (N.S.) 5 (1989), 281-288. | Zbl 0701.11045

[001] [2] O. Bernard, Groupes des classes d’idéaux des corps quadratiques réels (d1/2), 1 < d ≤ 24572, Théorie des nombres, Années 1986/87-1987/88, Fasc. 2, 65 pp., Besançon, 1988.

[002] [3] M. Gut, Abschätzungen für die Klassenzahlen der quadratischen Körper, Acta Arith. 8 (1962), 113-122. | Zbl 0116.02901

[003] [4] S. Louboutin, Majoration au point 1 des fonctions L associées aux caractères de Dirichlet primitifs, ou au caractère d'une extension quadratique d'un corps quadratique imaginaire principal, J. Reine Angew. Math. 419 (1991), 213-219. | Zbl 0721.11049

[004] [5] S. Louboutin, Majoration explicites de |L(1,χ)|, C. R. Acad. Sci. Paris Sér. I 316 (1993), 11-14.

[005] [6] M. Newman, Bounds for class numbers, in: Proc. Sympos. Pure Math. 8, Amer. Math. Soc., 1965, 70-77.

[006] [7] K. Petr, Sur l'équation de Pell, Časopis Pest. Mat. Fys. 56 (1927), 57-66 (in Czech).

[007] [8] R. G. Stanton, C. Sudler, Jr., and H. C. Williams, An upper bound for the period of the simple continued fraction for √D, Pacific J. Math. 67 (1976), 525-536. | Zbl 0346.10005

[008] [9] H. C. Williams and J. Broere, A computational technique for evaluating L(1,χ) and the class number of a real quadratic field, Math. Comp. 30 (1976), 887-893. | Zbl 0345.12004