On x³ + y³ + z³ = 3μxyz and Jacobi polynomials
Kaori Ota
Acta Arithmetica, Tome 68 (1994), p. 27-39 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:206642
@article{bwmeta1.element.bwnjournal-article-aav68i1p27bwm,
     author = {Kaori Ota},
     title = {On x$^3$ + y$^3$ + z$^3$ = 3$\mu$xyz and Jacobi polynomials},
     journal = {Acta Arithmetica},
     volume = {68},
     year = {1994},
     pages = {27-39},
     zbl = {0977.11026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav68i1p27bwm}
}
Kaori Ota. On x³ + y³ + z³ = 3μxyz and Jacobi polynomials. Acta Arithmetica, Tome 68 (1994) pp. 27-39. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav68i1p27bwm/

[000] [1] H. Bateman, Higher Transcendental Functions, Vol. 2, McGraw-Hill, 1953.

[001] [2] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience, 1953. | Zbl 0051.28802

[002] [3] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer, 1977.

[003] [4] T. Honda, On the theory of commutative formal groups, J. Math. Soc. Japan 22 (1970), 213-246. | Zbl 0202.03101

[004] [5] T. Honda, Two congruence properties of Legendre polynomials, Osaka J. Math. 13 (1976), 131-133. | Zbl 0345.12101

[005] [6] J. P. Serre, Sur la topologie des variétés algébriques en caractéristique p, in: Œuvres, Vol. 1, 38, 501-530.

[006] [7] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer, 1986.

[007] [8] N. Yui, Jacobi quartics, Legendre polynomials and formal groups, in: Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Math. 1326, Springer, 1988, 182-215.