@article{bwmeta1.element.bwnjournal-article-aav67i4p387bwm, author = {Franz Lemmermeyer}, title = {Rational quartic reciprocity}, journal = {Acta Arithmetica}, volume = {68}, year = {1994}, pages = {387-390}, zbl = {0833.11049}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav67i4p387bwm} }
Franz Lemmermeyer. Rational quartic reciprocity. Acta Arithmetica, Tome 68 (1994) pp. 387-390. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav67i4p387bwm/
[000] [1] K. Burde, Ein rationales biquadratisches Reziprozitätsgesetz, J. Reine Angew. Math. 235 (1969), 175-184. | Zbl 0169.36902
[001] [2] G. Lejeune Dirichlet, Recherche sur les diviseurs premiers d'une classe de formules du quatrième degré, J. Reine Angew. Math. 3 (1828), 35-69; Werke I , 63-98.
[002] [3] R. Evans, Residuacity of primes, Rocky Mountain J. Math. 19 (1989), 1069-1081. | Zbl 0699.10012
[003] [4] A. Fröhlich, The restricted biquadratic residue symbol, Proc. London Math. Soc. (3) 9 (1959), 189-207. | Zbl 0087.03301
[004] [5] T. Gosset, On the law of quartic reciprocity, Mess. Math. (2) 41 (1911), 65-90. | Zbl 42.0212.03
[005] [6] E. Lehmer, Criteria for cubic and quartic residuacity, Mathematika 5 (1958), 20-29. | Zbl 0102.28002
[006] [7] E. Lehmer, Rational reciprocity laws, Amer. Math. Monthly 85 (1978), 467-472. | Zbl 0383.10003
[007] [8] L. Rédei, Über die Grundeinheit und die durch 8 teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, J. Reine Angew. Math. 171 (1934), 131-148. | Zbl 0009.29302
[008] [9] A. Scholz, Über die Lösbarkeit der Gleichung t²-Du²=-4, Math. Z. 39 (1934), 95-111. | Zbl 0009.29402
[009] [10] B. A. Venkov, Elementary Number Theory, Moscow, 1937 (in Russian); English transl.: H. Alderson (ed.), Wolters-Noordhoff, Groningen, 1970.
[010] [11] K. S. Williams, K. Hardy and C. Friesen, On the evaluation of the Legendre symbol ((A+B√m)/p), Acta Arith. 45 (1985), 255-272. | Zbl 0524.10002