General discrepancy estimates II: the Haar function system
Peter Hellekalek
Acta Arithmetica, Tome 68 (1994), p. 313-322 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:206634
@article{bwmeta1.element.bwnjournal-article-aav67i4p313bwm,
     author = {Peter Hellekalek},
     title = {General discrepancy estimates II: the Haar function system},
     journal = {Acta Arithmetica},
     volume = {68},
     year = {1994},
     pages = {313-322},
     zbl = {0813.11046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav67i4p313bwm}
}
Peter Hellekalek. General discrepancy estimates II: the Haar function system. Acta Arithmetica, Tome 68 (1994) pp. 313-322. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav67i4p313bwm/

[000] [1] J. Eichenauer-Herrmann, Inversive congruential pseudorandom numbers: a tutorial, Internat. Statist. Rev. 60 (1992), 167-176. | Zbl 0766.65002

[001] [2] P. Hellekalek, General discrepancy estimates: the Walsh function system, this volume, 209-218. | Zbl 0805.11055

[002] [3] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974. | Zbl 0281.10001

[003] [4] H. Niederreiter, Pseudo-random numbers and optimal coefficients, Adv. in Math. 26 (1977), 99-181. | Zbl 0366.65004

[004] [5] H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), 957-1041. | Zbl 0404.65003

[005] [6] H. Niederreiter, New methods for pseudorandom number and pseudorandom vector generation, in: Proc. 1992 Winter Simulation Conference (Arlington, Va., 1992), IEEE Press, Piscataway, N.J., 1992, 264-269. | Zbl 0849.11055

[006] [7] H. Niederreiter, On a new class of pseudorandom numbers for simulation methods, J. Comput. Appl. Math., to appear. | Zbl 0823.65010

[007] [8] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.

[008] [9] F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990.

[009] [10] I. M. Sobol', Multidimensional Quadrature Formulas and Haar Functions, Nauka, Moscow, 1969 (in Russian).

[010] [11] I. M. Sobol' and O. V. Nuzhdin, A new measure of irregularity of distribution, J. Number Theory 39 (1991), 367-373. | Zbl 0743.11039