@article{bwmeta1.element.bwnjournal-article-aav67i4p295bwm, author = {Manfred Lochter}, title = {Weakly Kronecker equivalent number fields}, journal = {Acta Arithmetica}, volume = {68}, year = {1994}, pages = {295-312}, zbl = {0829.11061}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav67i4p295bwm} }
Manfred Lochter. Weakly Kronecker equivalent number fields. Acta Arithmetica, Tome 68 (1994) pp. 295-312. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav67i4p295bwm/
[000] [1] B. Fein, W. Kantor and M. Schacher, Relative Brauer groups II, J. Reine Angew. Math. 328 (1981), 374-403. | Zbl 0457.13004
[001] [2] W. Feit, Some consequences of the classification of finite simple groups, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 175-181. | Zbl 0454.20014
[002] [3] R. Guralnick, Zeroes of permutation characters with applications to prime splitting and Brauer groups, J. Algebra 131 (1990), 294-302. | Zbl 0708.12005
[003] [4] R. Guralnick and D. Wales, Subgroups inducing the same permutation representation II, J. Algebra 96 (1985), 94-113. | Zbl 0577.20005
[004] [5] W. Jehne, Kronecker classes of algebraic number fields, J. Number Theory 9 (1977), 279-320. | Zbl 0392.12003
[005] [6] W. Jehne, On Kronecker classes of atomic extensions, Proc. London Math. Soc. (3) 34 (1977), 32-64. | Zbl 0356.12015
[006] [7] N. Klingen, Zahlkörper mit gleicher Primzerlegung, J. Reine Angew. Math. 299/300 (1978), 342-384.
[007] [8] N. Klingen, Atomare Kronecker-Klassen mit speziellen Galoisgruppen, Abh. Math. Sem. Univ. Hamburg (1979), 42-53.
[008] [9] N. Klingen, Rigidity of decomposition laws and number fields, J. Austral. Math. Soc. Ser. A 51 (1991), 171-186. | Zbl 0745.11047
[009] [10] K. Komatsu, Einige Bemerkungen über Dedekindsche Zetafunktionen und K-Gruppe, Arch. Math. (Basel) 54 (1990), 164-165.
[010] [11] M. Lochter, Neue zahlentheoretische Aspekte der Kronecker-Äquivalenz, thesis, Köln, 1992.
[011] [12] M. Lochter, New characterizations of Kronecker equivalence, J. Number Theory, to appear.
[012] [13] J. Neukirch, Class Field Theory, Springer, 1986. | Zbl 0587.12001
[013] [14] R. Perlis, On the equation , J. Number Theory 9 (1977), 342-360. | Zbl 0389.12006
[014] [15] Ch. E. Praeger, Covering subgroups of groups and Kronecker classes of fields, J. Algebra 118 (1988), 455-463. | Zbl 0667.12004
[015] [16] Ch. E. Praeger, On octic field extensions and a problem in group theory, in: Group Theory, Proceedings of the 1987 Singapore Conference, Walter de Gruyter, Berlin, 1989, 443-463.
[016] [17] Ch. E. Praeger, Kronecker classes of field extensions of small degree, J. Austral. Math. Soc. Ser. A 50 (1991), 297-315. | Zbl 0733.12007
[017] [18] J. Saxl, On a question of W. Jehne concerning covering subgroups of groups and Kronecker classes of fields, J. London Math. Soc. (2) 38 (1988), 243-249. | Zbl 0663.12010
[018] [19] V. Schulze, Kronecker-äquivalente Körpererweiterungen und p-Ränge, J. Reine Angew. Math. 328 (1981), 9-21.
[019] [20] J. P. Serre, Linear Representations of Finite Groups, Springer, Berlin, 1977. | Zbl 0355.20006
[020] [21] L. Stern, On the equality of norm groups of global fields, J. Number Theory 36 (1990), 108-126. | Zbl 0718.11056
[021] [22] B. L. van der Waerden, Die Seltenheit der Gleichungen mit Affekt, Math. Ann. 109 (1934), 13-16. | Zbl 0007.39101