On CM-fields with the same maximal real subfield
Kuniaki Horie
Acta Arithmetica, Tome 68 (1994), p. 219-227 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:206628
@article{bwmeta1.element.bwnjournal-article-aav67i3p219bwm,
     author = {Kuniaki Horie},
     title = {On CM-fields with the same maximal real subfield},
     journal = {Acta Arithmetica},
     volume = {68},
     year = {1994},
     pages = {219-227},
     zbl = {0811.11065},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav67i3p219bwm}
}
Kuniaki Horie. On CM-fields with the same maximal real subfield. Acta Arithmetica, Tome 68 (1994) pp. 219-227. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav67i3p219bwm/

[000] [1] B. Datskovsky and D. J. Wright, Density of discriminants of cubic extensions, J. Reine Angew. Math. 386 (1988), 116-138. | Zbl 0632.12007

[001] [2] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields, II, Proc. Roy. Soc. London Ser. A 322 (1971), 405-420. | Zbl 0212.08101

[002] [3] E. Friedman, Iwasawa invariants, Math. Ann. 271 (1985), 13-30. | Zbl 0533.12007

[003] [4] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Phisica-Verlag, Würzburg-Wien, 1970.

[004] [5] K. Horie, A note on basic Iwasawa λ-invariants of imaginary quadratic fields, Invent. Math. 88 (1987), 31-38.

[005] [6] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258. | Zbl 0074.03002

[006] [7] Y. Kida, Cyclotomic ℤ₂-extensions of J-fields, J. Number Theory 14 (1982), 340-352.

[007] [8] T. Kubota, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J. 10 (1956), 65-85. | Zbl 0074.03001

[008] [9] H. Naito, Indivisibility of class numbers of totally imaginary quadratic extensions and their Iwasawa invariants, J. Math. Soc. Japan 43 (1991), 185-194. | Zbl 0719.11072

[009] [10] J. Nakagawa and K. Horie, Elliptic curves with no rational points, Proc. Amer. Math. Soc. 104 (1988), 20-24. | Zbl 0663.14023

[010] [11] L. Rédei and H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1933), 69-74. | Zbl 59.0192.01

[011] [12] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982. | Zbl 0484.12001