General discrepancy estimates: the Walsh function system
Peter Hellekalek
Acta Arithmetica, Tome 68 (1994), p. 209-218 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:206627
@article{bwmeta1.element.bwnjournal-article-aav67i3p209bwm,
     author = {Peter Hellekalek},
     title = {General discrepancy estimates: the Walsh function system},
     journal = {Acta Arithmetica},
     volume = {68},
     year = {1994},
     pages = {209-218},
     zbl = {0805.11055},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav67i3p209bwm}
}
Peter Hellekalek. General discrepancy estimates: the Walsh function system. Acta Arithmetica, Tome 68 (1994) pp. 209-218. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav67i3p209bwm/

[000] [1] T. Cochrane, On a trigonometric inequality of Vinogradov, J. Number Theory 27 (1987), 9-16. | Zbl 0629.10030

[001] [2] H. Niederreiter, On the distribution of pseudo-random numbers generated by the linear congruential method. III, Math. Comp. 30 (1976), 571-597. | Zbl 0342.65002

[002] [3] H. Niederreiter, Pseudo-random numbers and optimal coefficients, Adv. in Math. 26 (1977), 99-181. | Zbl 0366.65004

[003] [4] H. Niederreiter, Pseudozufallszahlen und die Theorie der Gleichverteilung, Sitzungsber. Österr. Akad. Wiss. Math.-Natur. Kl. II 195 (1986), 109-138. | Zbl 0616.10040

[004] [5] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.

[005] [6] F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990.