The number of cube-full numbers in an interval
Hong-Quan Liu
Acta Arithmetica, Tome 68 (1994), p. 1-12 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:206615
@article{bwmeta1.element.bwnjournal-article-aav67i1p1bwm,
     author = {Hong-Quan Liu},
     title = {The number of cube-full numbers in an interval},
     journal = {Acta Arithmetica},
     volume = {68},
     year = {1994},
     pages = {1-12},
     zbl = {0810.11054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav67i1p1bwm}
}
Hong-Quan Liu. The number of cube-full numbers in an interval. Acta Arithmetica, Tome 68 (1994) pp. 1-12. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav67i1p1bwm/

[000] [1] E. Krätzel, Zweifache Exponentialsummen und dreidimensionale Gitterpunktprobleme, in: Elementary and Analytic Theory of Numbers, Banach Center Publ. 17, PWN-Polish Scientific Publishers, Warszawa, 1985, 337-369.

[001] [2] H.-Q. Liu, On the number of abelian groups of a given order, Acta Arith. 59 (1991), 261-277. | Zbl 0737.11024

[002] [3] H.-Q. Liu, The number of squarefull numbers in an interval, Acta Arith. 64 (1993), 129-149.

[003] [4] H.-Q. Liu, On the number of abelian groups of a given order (supplement), Acta Arith. 64 (1993), 285-296.

[004] [5] S. H. Min, Methods in Number Theory, Vol. 2, Science Press, 1981 (in Chinese). | Zbl 0649.10001

[005] [6] P. G. Schmidt, Zur Anzahl Abelscher Gruppen gegebener Ordnung, J. Reine Angew. Math. 229 (1968), 34-42. | Zbl 0155.08803

[006] [7] P. Shiu, The distribution of cube-full numbers, Glasgow Math. J. 33 (1991), 287-295. | Zbl 0732.11044