On a result of Mahler on the decimal expansions of (nα)
Daniel Berend ; Michael D. Boshernitzan
Acta Arithmetica, Tome 68 (1994), p. 315-322 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:206608
@article{bwmeta1.element.bwnjournal-article-aav66i4p315bwm,
     author = {Daniel Berend and Michael D. Boshernitzan},
     title = {On a result of Mahler on the decimal expansions of (n$\alpha$)},
     journal = {Acta Arithmetica},
     volume = {68},
     year = {1994},
     pages = {315-322},
     zbl = {0815.11035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav66i4p315bwm}
}
Daniel Berend; Michael D. Boshernitzan. On a result of Mahler on the decimal expansions of (nα). Acta Arithmetica, Tome 68 (1994) pp. 315-322. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav66i4p315bwm/

[000] [AP] N. Alon and Y. Peres, Uniform dilations, J. Geom. Funct. Anal. 2 (1992), 1-28.

[001] [B] M. Boshernitzan, Uniform distribution and Hardy fields, J. Analyse Math., to appear. | Zbl 0804.11046

[002] [C] J. R. Chen, On Professor Hua's estimate of exponential sums , Sci. Sinica 20 (1977), 711-719. | Zbl 0374.10024

[003] [G] S. Glasner, Almost periodic sets and measures on the torus, Israel J. Math. 32 (1979), 161-172. | Zbl 0406.54023

[004] [H] L. K. Hua, Introduction to Number Theory, Springer, New York, 1982.

[005] [KN] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974. | Zbl 0281.10001

[006] [M] K. Mahler, Arithmetical properties of the digits of the multiples of an irrational number, Bull. Austral. Math. Soc. 8 (1973), 191-203. | Zbl 0248.10024

[007] [S] S. B. Stečkin, An estimate of a complete rational trigonometric sum, Analytic Number Theory, Mathematical Analysis and their Applications, Trudy Mat. Inst. Steklov. 143 (1977), 188-207, 211; English transl.: Proc. Steklov Inst. Math. (1980), 201-220.

[008] [W] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352. | Zbl 46.0278.06