@article{bwmeta1.element.bwnjournal-article-aav66i3p269bwm, author = {A. S\'ark\"ozy}, title = {On isolated, respectively consecutive large values of arithmetic functions}, journal = {Acta Arithmetica}, volume = {68}, year = {1994}, pages = {269-295}, zbl = {0802.11035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav66i3p269bwm} }
A. Sárközy. On isolated, respectively consecutive large values of arithmetic functions. Acta Arithmetica, Tome 68 (1994) pp. 269-295. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav66i3p269bwm/
[000] [1] G. J. Babu and P. Erdős, A note on the distribution function of additive arithmetic functions in short intervals, Canad. Math. Bull. 32 (1989), 441-445. | Zbl 0638.10049
[001] [2] A. S. Bang, Taltheoretiske Undersøgelser, Tidskrift for Math. (5) 4 (1886), 70-80 and 130-137.
[002] [3] L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chelsea, New York, 1952.
[003] [4] P. Erdős, Remarks on two problems of the Matematikai Lapok, Mat. Lapok 7 (1956), 10-17 (in Hungarian). | Zbl 0075.03104
[004] [5] P. Erdős, Remarks on two problems, Mat. Lapok 7 11 (1960), 26-32 (in Hungarian). | Zbl 0100.27201
[005] [6] P. Erdős et J.-L. Nicolas, Sur la fonction: nombre de facteurs premiers de N, Enseign. Math. 27 (1981), 3-21.
[006] [7] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Clarendon Press, Oxford, 1960. | Zbl 0086.25803
[007] [8] K. Mahler, Lectures on Diophantine Approximations, Part 1: g-adic numbers and Roth's theorem, University of Notre Dame Press, Notre Dame, 1961.
[008] [9] S. Ramanujan, Highly composite numbers, Proc. London Math. Soc. 14 (1915), 347-409. | Zbl 45.1248.01
[009] [10] C. L. Stewart, A note on the product of consecutive integers, in: Colloq. Math. Soc. János Bolyai 34, North-Holland, 1984, 1523-1537