The number of solutions to cubic Thue inequalities
Jeffrey Lin Thunder
Acta Arithmetica, Tome 68 (1994), p. 237-243 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:206603
@article{bwmeta1.element.bwnjournal-article-aav66i3p237bwm,
     author = {Jeffrey Lin Thunder},
     title = {The number of solutions to cubic Thue inequalities},
     journal = {Acta Arithmetica},
     volume = {68},
     year = {1994},
     pages = {237-243},
     zbl = {0807.11018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav66i3p237bwm}
}
Jeffrey Lin Thunder. The number of solutions to cubic Thue inequalities. Acta Arithmetica, Tome 68 (1994) pp. 237-243. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav66i3p237bwm/

[000] [B1] M. Bean, Areas of plane regions defined by binary forms, Ph.D. thesis, University of Waterloo, 1992.

[001] [B2] M. Bean, Bounds for the number of solutions of the Thue equation, M. thesis, University of Waterloo, 1988.

[002] [E] J. H. Evertse, Estimates for reduced binary forms, J. Reine Angew. Math. 434 (1993), 159-190. | Zbl 0763.11012

[003] [EG] J. H. Evertse and K. Győry, Effective finiteness results for binary forms, Compositio Math. 79 (1991), 169-204. | Zbl 0746.11020

[004] [M1] K. Mahler, Zur Approximation algebraischer Zahlen III, Acta Math. 62 (1934), 91-166. | Zbl 60.0159.04

[005] [M2] K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J. 11 (1969), 257-262.

[006] [S] W. Schmidt, Diophantine Approximations and Diophantine Equations, Lecture Notes in Math. 1467, Springer, New York, 1991. | Zbl 0754.11020

[007] [T] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135 (1909), 284-305.