On general L-functions
E. Carletti ; G. Monti Bragadin ; A. Perelli
Acta Arithmetica, Tome 68 (1994), p. 147-179 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:206598
@article{bwmeta1.element.bwnjournal-article-aav66i2p147bwm,
     author = {E. Carletti and G. Monti Bragadin and A. Perelli},
     title = {On general L-functions},
     journal = {Acta Arithmetica},
     volume = {68},
     year = {1994},
     pages = {147-179},
     zbl = {0809.11046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav66i2p147bwm}
}
E. Carletti; G. Monti Bragadin; A. Perelli. On general L-functions. Acta Arithmetica, Tome 68 (1994) pp. 147-179. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav66i2p147bwm/

[000] [1] P. Deligne, La conjecture de Weil II, Publ. Math. I.H.E.S. 52 (1980), 137-252. | Zbl 0456.14014

[001] [2] W. Duke and H. Iwaniec, Estimates for coefficients of L-functions I and II, in: Automorphic Forms and Analytic Number Theory, CMR 1990, 43-47; Proc. Amalfi Conf. on Analytic Number Theory, Università di Salerno, 1992, 71-82.

[002] [3] S. Gelbart and F. Shahidi, Analytic Properties of Automorphic L-functions, Academic Press, 1988. | Zbl 0654.10028

[003] [4] D. Goldfeld and C. Viola, Mean values of L-functions associated to elliptic, Fermat and other curves at the center of the critical strip, J. Number Theory 11 (1979), 305-320. | Zbl 0409.10029

[004] [5] J. L. Hafner, On the average order of a class of arithmetical functions, J. Number Theory 15 (1982), 36-76. | Zbl 0495.10027

[005] [6] D. Joyner, Distribution Theorems of L-Functions, Pitman, 1986. | Zbl 0609.10032

[006] [7] N. Kurokawa, On the meromorphy of Euler products I, II, Proc. London Math. Soc. (3) 53 (1986), 1-47 and 209-236. | Zbl 0595.10031

[007] [8] J. C. Lagarias, H. L. Montgomery and A. M. Odlyzko, A lower bound for the least prime ideal in Chebotarev density theorem, Invent. Math. 54 (1979), 271-296. | Zbl 0401.12014

[008] [9] S. Lang, On the zeta function of number fields, Invent. Math. 12 (1971), 337-345. | Zbl 0217.04301

[009] [10] Yu. V. Linnik, The Dispersion Method in Binary Additive Problems, Transl. Math. Monographs 4, Amer. Math. Soc., 1963.

[010] [11] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, 1979. | Zbl 0487.20007

[011] [12] T. Mitsui, On the prime ideal theorem, J. Math. Soc. Japan 20 (1968), 233-247. | Zbl 0172.06102

[012] [13] C. J. Moreno, The method of Hadamard and de la Vallée-Poussin, Enseign. Math. 29 (1983), 89-128. | Zbl 0562.14004

[013] [14] A. Perelli, General L-functions, Ann. Mat. Pura Appl. (4) 130 (1982), 287-306. | Zbl 0485.10030

[014] [15] A. Perelli and G. Puglisi, Real zeros of general L-functions, Atti. Accad. Naz. Lincei Rend. (8) 70 (1982), 69-74. | Zbl 0506.10034

[015] [16] D. Redmond, Explicit formulae for a class of Dirichlet series, Pacific J. Math. 102 (1982), 413-435. | Zbl 0464.30002

[016] [17] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in: Proc. Amalfi Conf. on Analytic Number Theory, Università di Salerno, 1992, 367-385. | Zbl 0787.11037

[017] [18] A. V. Sokolovskiĭ, A theorem on the zeros of Dedekind's zeta function and the distance between 'neighboring' prime ideals, Acta Arith. 13 (1967/68), 321-334 (in Russian). | Zbl 0153.07003

[018] [19] V. G. Sprindžuk, The vertical distribution of zeros of the zeta function and the extended Riemann hypothesis, Acta Arith. 27 (1975), 317-332 (in Russian).

[019] [20] H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135-152. | Zbl 0278.12005

[020] [21] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1951. | Zbl 0042.07901