On extremal sets without coprimes
Rudolf Ahlswede ; Levon H. Khachatrian
Acta Arithmetica, Tome 68 (1994), p. 89-99 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:206594
@article{bwmeta1.element.bwnjournal-article-aav66i1p89bwm,
     author = {Rudolf Ahlswede and Levon H. Khachatrian},
     title = {On extremal sets without coprimes},
     journal = {Acta Arithmetica},
     volume = {68},
     year = {1994},
     pages = {89-99},
     zbl = {0826.11043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav66i1p89bwm}
}
Rudolf Ahlswede; Levon H. Khachatrian. On extremal sets without coprimes. Acta Arithmetica, Tome 68 (1994) pp. 89-99. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav66i1p89bwm/

[000] [1] R. Ahlswede and D. E. Daykin, An inequality for the weights of two families of sets, their unions and intersections, Z. Wahrsch. Verw. Gebiete 43 (1978), 183-185. | Zbl 0357.04011

[001] [2] R. Ahlswede and D. E. Daykin, The number of values of combinatorial functions, Bull. London Math. Soc. 11 (1979), 49-51. | Zbl 0409.05006

[002] [3] R. Ahlswede and D. E. Daykin, Inequalities for a pair of maps S × S → S with S a finite set, Math. Z. 165 (1979), 267-289. | Zbl 0424.05005

[003] [4] B. Bollobás, Combinatorics, Cambridge University Press, 1986.

[004] [5] P. Erdős, On the differences of consecutive primes, Quart. J. Math. Oxford Ser. 6 (1935), 124-128. | Zbl 61.0134.03

[005] [6] P. Erdős, Remarks in number theory, IV , Mat. Lapok 13 (1962), 228-255.

[006] [7] P. Erdős, Problems and results on combinatorial number theory, Chapt. 12 in: A Survey of Combinatorial Theory, J. N. Srivastava et al. (eds.), North-Holland, 1973.

[007] [8] P. Erdős, A survey of problems in combinatorial number theory, Ann. Discrete Math. 6 (1980), 89-115. | Zbl 0448.10002

[008] [9] P. Erdős and A. Sárközy, On sets of coprime integers in intervals, preprint No. 9/1992, Mathematical Institute of the Hungarian Academy of Sciences.

[009] [10] P. Erdős, A. Sárközy and E. Szemerédi, On some extremal properties of sequences of integers, Ann. Univ. Sci. Budapest. Eötvös 12 (1969), 131-135. | Zbl 0188.34504

[010] [11] P. Erdős, A. Sárközy and E. Szemerédi, On some extremal properties of sequences of integers, II, Publ. Math. 27 (1980), 117-125. | Zbl 0461.10047

[011] [12] J. Marica and J. Schönheim, Differences of sets and a problem of Graham, Canad. Math. Bull. 12 (1969), 635-637. | Zbl 0192.33202

[012] [13] R. A. Rankin, The difference between consecutive prime numbers, J. London Math. Soc. 13 (1938), 242-247. | Zbl 0019.39403

[013] [14] C. Szabó and G. Tóth, Maximal sequences not containing 4 pairwise coprime integers, Mat. Lapok 32 (1985), 253-257 (in Hungarian). | Zbl 0609.10044