Descent via isogeny in dimension 2
E. V. Flynn
Acta Arithmetica, Tome 68 (1994), p. 23-43 / Harvested from The Polish Digital Mathematics Library
Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:206590
@article{bwmeta1.element.bwnjournal-article-aav66i1p23bwm,
     author = {E. V. Flynn},
     title = {Descent via isogeny in dimension 2},
     journal = {Acta Arithmetica},
     volume = {68},
     year = {1994},
     pages = {23-43},
     zbl = {0835.14009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav66i1p23bwm}
}
E. V. Flynn. Descent via isogeny in dimension 2. Acta Arithmetica, Tome 68 (1994) pp. 23-43. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav66i1p23bwm/

[000] [1] J. B. Bost et J.-F. Mestre, Moyenne arithmético-géometrique et périodes des courbes de genre 1 et 2, Gaz. Math. 38 (1988), 36-64.

[001] [2] J. W. S. Cassels, Arithmetic on curves of genus 1, I. On a conjecture of Selmer, J. Reine Angew. Math. 202 (1959), 52-59. | Zbl 0090.03005

[002] [3] J. W. S. Cassels, The Mordell-Weil group of curves of genus 2, in: Arithmetic and Geometry papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday, Vol. 1, Arithmetic, Birkhäuser, Boston, 1983, 29-60.

[003] [4] J. W. S. Cassels, Lectures on Elliptic Curves, London Math. Soc. Stud. Texts 24, Cambridge University Press, 1991.

[004] [5] C. Chabauty, Sur les points rationnels des variétés algébriques dont l'irregularité et supérieur à la dimension, C. R. Acad. Sci. Paris 212 (1941), 882-885. | Zbl 67.0105.01

[005] [6] R. F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), 765-780. | Zbl 0588.14015

[006] [7] E. V. Flynn, The Jacobian and formal group of a curve of genus 2 over an arbitrary ground field, Math. Proc. Cambridge Philos. Soc. 107 (1990), 425-441. | Zbl 0723.14023

[007] [8] E. V. Flynn, The group law on the Jacobian of a curve of genus 2, J. Reine Angew. Math., to appear. | Zbl 0765.14014

[008] [9] D. M. Gordon and D. Grant, Computing the Mordell-Weil rank of Jacobians of curves of genus 2, Trans. Amer. Math. Soc., to appear. | Zbl 0790.14028

[009] [10] D. Grant, Formal groups in genus 2, J. Reine Angew. Math. 411 (1990), 96-121. | Zbl 0702.14025

[010] [11] W. G. McCallum, The arithmetic of Fermat curves, Math. Ann. 294 (1992), 503-511. | Zbl 0766.14013

[011] [12] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986 | Zbl 0585.14026