Polynomial cycles in certain local domains
T. Pezda
Acta Arithmetica, Tome 68 (1994), p. 11-22 / Harvested from The Polish Digital Mathematics Library

1. Let R be a domain and f ∈ R[X] a polynomial. A k-tuple x,x,...,xk-1 of distinct elements of R is called a cycle of f if f(xi)=xi+1 for i=0,1,...,k-2 and f(xk-1)=x. The number k is called the length of the cycle. A tuple is a cycle in R if it is a cycle for some f ∈ R[X]. It has been shown in [1] that if R is the ring of all algebraic integers in a finite extension K of the rationals, then the possible lengths of cycles of R-polynomials are bounded by the number 77·2N, depending only on the degree N of K. In this note we consider the case when R is a discrete valuation domain of zero characteristic with finite residue field. We shall obtain an upper bound for the possible lengths of cycles in R and in the particular case R=ℤₚ (the ring of p-adic integers) we describe all possible cycle lengths. As a corollary we get an upper bound for cycle lengths in the ring of integers in an algebraic number field, which improves the bound given in [1]. The author is grateful to the referee for his suggestions, which essentially simplified the proof in Subsection 6 and improved the bound for C(p) in Theorem 1 in the case p = 2,3.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:206588
@article{bwmeta1.element.bwnjournal-article-aav66i1p11bwm,
     author = {T. Pezda},
     title = {Polynomial cycles in certain local domains},
     journal = {Acta Arithmetica},
     volume = {68},
     year = {1994},
     pages = {11-22},
     zbl = {0803.11063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav66i1p11bwm}
}
T. Pezda. Polynomial cycles in certain local domains. Acta Arithmetica, Tome 68 (1994) pp. 11-22. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav66i1p11bwm/

[000] [1] W. Narkiewicz, Polynomial cycles in algebraic number fields, Colloq. Math. 58 (1989), 151-155. | Zbl 0703.12002