@article{bwmeta1.element.bwnjournal-article-aav65i3p259bwm, author = {Imre Z. Ruzsa}, title = {Solving a linear equation in a set of integers I}, journal = {Acta Arithmetica}, volume = {64}, year = {1993}, pages = {259-282}, zbl = {1042.11525}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav65i3p259bwm} }
Imre Z. Ruzsa. Solving a linear equation in a set of integers I. Acta Arithmetica, Tome 64 (1993) pp. 259-282. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav65i3p259bwm/
[000] M. Ajtai, J. Komlós and E. Szemerédi (1981), A dense infinite Sidon sequence, European J. Combin. 2, 1-11. | Zbl 0474.10038
[001] F. A. Behrend (1946), On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U.S.A. 32, 331-333. | Zbl 0060.10302
[002] R. C. Bose (1942), An affine analogue of Singer's theorem, J. Indian Math. Soc. 6, 1-15. | Zbl 0063.00542
[003] R. C. Bose and S. Chowla (1962-63), Theorems in the additive theory of numbers, Comment. Math. Helv. 37, 141-147.
[004] P. Erdős and P. Turán (1941), On a problem of Sidon in additive number theory and some related problems, J. London Math. Soc. 16, 212-215. | Zbl 67.0984.03
[005] H. Halberstam and K. F. Roth (1966), Sequences, Clarendon, London (2nd ed. Springer, New York, 1983).
[006] D. R. Heath-Brown (1987), Integer sets containing no arithmetic progression, J. London Math. Soc. 35, 385-394. | Zbl 0589.10062
[007] J. Komlós, M. Sulyok and E. Szemerédi (1975), Linear problems in combinatorial number theory, Acta Math. Hungar. 26, 113-121. | Zbl 0303.10058
[008] B. Lindström (1969), An inequality for B₂-sequences, J. Combin. Theory 6, 211-212. L. Moser (1953), On non-averaging sets of integers , Canadian J. Math. 5, 245-252.
[009] K. F. Roth (1953), On certain sets of integers, J. London Math. Soc. 28, 104-109. | Zbl 0050.04002
[010] J. Singer (1938), A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43, 377-385. | Zbl 64.0972.04
[011] A. Stöhr (1955), Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe, J. Reine Angew. Math. 194, 40-65, 111-140. | Zbl 0066.03101
[012] E. Szemerédi (1975), On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27, 199-245. | Zbl 0303.10056
[013] E. Szemerédi (1990), Integer sets containing no arithmetic progressions, Acta Math. Hungar. 56, 155-158. | Zbl 0721.11007