@article{bwmeta1.element.bwnjournal-article-aav65i3p243bwm, author = {Jonathan W. Sands}, title = {On the non-triviality of the basic Iwasawa $\lambda$-invariant for an infinitude of imaginary quadratic fields}, journal = {Acta Arithmetica}, volume = {64}, year = {1993}, pages = {243-248}, zbl = {0789.11061}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav65i3p243bwm} }
Jonathan W. Sands. On the non-triviality of the basic Iwasawa λ-invariant for an infinitude of imaginary quadratic fields. Acta Arithmetica, Tome 64 (1993) pp. 243-248. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav65i3p243bwm/
[000] [1] D. S. Dummit, D. Ford, H. Kisilevsky and J. W. Sands, Computation of Iwasawa lambda invariants for imaginary quadratic fields, J. Number Theory 37 (1991), 100-121. | Zbl 0722.11052
[001] [2] L. J. Federer and B. H. Gross (Appendix by W. Sinnott), Regulators and Iwasawa modules, Invent. Math. 62 (1981), 443-457. | Zbl 0468.12005
[002] [3] B. Ferrero and L. Washington, The Iwasawa invariant μₚ vanishes for abelian number fields, Ann. of Math. 109 (1979), 377-395. | Zbl 0443.12001
[003] [4] R. Gold, The nontriviality of certain -extensions, J. Number Theory 6 (1974), 269-273.
[004] [5] K. Horie, A note on basic Iwasawa λ-invariants of imaginary quadratic fields, Invent. Math. 88 (1987), 31-38.
[005] [6] N. Jochnowitz, A p-adic conjecture about derivatives of L-series attached to modular forms, to appear.
[006] [7] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57-76. | Zbl 0222.12003