Values of linear recurring sequences of vectors over finite fields
Gary L. Mullen ; Igor Shparlinski
Acta Arithmetica, Tome 64 (1993), p. 221-226 / Harvested from The Polish Digital Mathematics Library
Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:206575
@article{bwmeta1.element.bwnjournal-article-aav65i3p221bwm,
     author = {Gary L. Mullen and Igor Shparlinski},
     title = {Values of linear recurring sequences of vectors over finite fields},
     journal = {Acta Arithmetica},
     volume = {64},
     year = {1993},
     pages = {221-226},
     zbl = {0789.11013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav65i3p221bwm}
}
Gary L. Mullen; Igor Shparlinski. Values of linear recurring sequences of vectors over finite fields. Acta Arithmetica, Tome 64 (1993) pp. 221-226. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav65i3p221bwm/

[000] [1] W.-S. Chou and G. L. Mullen, Generating linear spans over finite fields, Acta Arith. 61 (1992), 183-191. | Zbl 0728.11066

[001] [2] R. Fitzgerald and J. Yucas, On generating linear spans over GF(p), Congr. Numer. 69 (1989), 55-60. | Zbl 0688.12013

[002] [3] R. Kannan and R. J. Lipton, Polynomial-time algorithm for the orbit problem, J. Assoc. Comput. Mach. 33 (1986), 808-821. | Zbl 1326.68162

[003] [4] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl. 20, Addison-Wesley, Reading, Mass., 1983 (now distributed by Cambridge Univ. Press). | Zbl 0554.12010

[004] [5] K. S. McCurley, The discrete logarithm problem, in: Cryptology and Computational Number Theory, C. Pomerance (ed.), Proc. Sympos. Appl. Math. 42, Amer. Math. Soc., 1990, 49-74.

[005] [6] I. Shparlinski, On the distribution of recurring sequences, Problemy Peredachi Informatsii 25 (2) (1989), 46-53 (in Russian).

[006] [7] I. Shparlinski, On the distribution of values of recurring sequences and the Bell numbers in finite fields, European J. Combin. 12 (1991), 81-87