@article{bwmeta1.element.bwnjournal-article-aav64i4p297bwm, author = {Naoki Murabayashi}, title = {Mordell-Weil rank of the jacobians of the curves defined by $y^p = f(x)$ }, journal = {Acta Arithmetica}, volume = {64}, year = {1993}, pages = {297-302}, zbl = {0785.14011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav64i4p297bwm} }
Naoki Murabayashi. Mordell-Weil rank of the jacobians of the curves defined by $y^p = f(x)$ . Acta Arithmetica, Tome 64 (1993) pp. 297-302. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav64i4p297bwm/
[000] [1] Yu. I. Manin, Cyclotomic fields and modular curves, Russian Math. Surveys 26 (6) (1971), 7-78. | Zbl 0266.14012
[001] [2] B. Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183-266. | Zbl 0245.14015
[002] [3] H. P. F. Swinnerton-Dyer, The conjectures of Birch and Swinnerton-Dyer, and of Tate, in: Proceedings of a conference on local fields (Driebergen, 1966), Springer, 1967, 132-157.
[003] [4] J. Top, A remark on the rank of jacobians of hyperelliptic curves over ℚ over certain elementary abelian 2-extensions, Tôhoku Math. J. 40 (1988), 613-616. | Zbl 0688.14027
[004] [5] A. Weil, Jacobi sums as Grössencharaktere, Trans. Amer. Math. Soc. 73 (1952), 487-495. | Zbl 0048.27001