Explicit solution of a class of quartic Thue equations
Nikos Tzanakis
Acta Arithmetica, Tome 64 (1993), p. 271-283 / Harvested from The Polish Digital Mathematics Library
Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:206550
@article{bwmeta1.element.bwnjournal-article-aav64i3p271bwm,
     author = {Nikos Tzanakis},
     title = {Explicit solution of a class of quartic Thue equations},
     journal = {Acta Arithmetica},
     volume = {64},
     year = {1993},
     pages = {271-283},
     zbl = {0774.11014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav64i3p271bwm}
}
Nikos Tzanakis. Explicit solution of a class of quartic Thue equations. Acta Arithmetica, Tome 64 (1993) pp. 271-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav64i3p271bwm/

[000] [BD] A. Baker and H. Davenport, The equations 3x²-2=y² and 8x²-7=z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.

[001] [C1] J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. (3) 16 (1966), 153-166. | Zbl 0136.02806

[002] [C2] J. H. E. Cohn, The Diophantine equation y²=Dx⁴+1, J. London Math. Soc. 42 (1967), 475-476.

[003] [C3] J. H. E. Cohn, Some quartic Diophantine equations, Pacific J. Math. 26 (1968), 233-243. | Zbl 0191.04902

[004] [C4] J. H. E. Cohn, The Diophantine equation y²=Dx⁴+1, II, Acta Arith. 28 (1975), 273-275.

[005] [C5] J. H. E. Cohn, The Diophantine equation y²=Dx⁴+1, III, Math. Scand. 42 (1978), 180-188. | Zbl 0395.10025

[006] [M*] L. J. Mordell, Diophantine Equations, Pure Appl. Math. 30, Academic Press, London 1969.

[007] [MR] S. P. Mohanty and A. M. S. Ramasamy, The characteristic number of two simultaneous Pell's equations and its applications, Simon Stevin 59 (1985), 203-214. | Zbl 0575.10010

[008] [N] T. Nagell, Sur quelques questions dans la théorie des corps biquadratiques, Ark. Mat. 4 (1961), 347-376. | Zbl 0107.03202

[009] [N*] T. Nagell, Introduction to Number Theory, Chelsea, New York 1964.

[010] [PS] A. Pethő and R. Schulenberg, Effektives Lösen von Thue Gleichungen, Publ. Math. Debrecen 34 (1987), 189-196.

[011] [P] R. G. E. Pinch, Simultaneous Pellian equations, Math. Proc. Cambridge Philos. Soc. 103 (1988), 35-46. | Zbl 0641.10014

[012] [TW] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132. | Zbl 0657.10014

[013] [Z] D. Zagier, Large integral points on elliptic curves, Math. Comp. 48 (1987), 425-436 | Zbl 0611.10008