On the l-divisibility of the relative class number of certain cyclic number fields
Kurt Girstmair
Acta Arithmetica, Tome 64 (1993), p. 189-204 / Harvested from The Polish Digital Mathematics Library
Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:271767
@article{bwmeta1.element.bwnjournal-article-aav64i2p189bwm,
     author = {Kurt Girstmair},
     title = {On the l-divisibility of the relative class number of certain cyclic number fields},
     journal = {Acta Arithmetica},
     volume = {64},
     year = {1993},
     pages = {189-204},
     zbl = {0773.11068},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav64i2p189bwm}
}
Kurt Girstmair. On the l-divisibility of the relative class number of certain cyclic number fields. Acta Arithmetica, Tome 64 (1993) pp. 189-204. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav64i2p189bwm/

[000] [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York 1976.

[001] [2] S. I. Borevič und I. R. Šafarevič, Zahlentheorie, Birkhäuser, Basel 1966.

[002] [3] K. Girstmair, The relative class numbers of imaginary cyclic fields of degrees 4, 6, 8, and 10, Math. Comp., to appear. | Zbl 0787.11046

[003] [4] K. Girstmair, On the cosets of the 2q-power group in the unit group modulo p, Abh. Math. Sem. Univ. Hamburg 62 (1992), 217-232. | Zbl 0779.11052

[004] [5] H. Hasse, Über die Klassenzahl abelscher Zahlkörper (Nachdruck der ersten Auflage), Springer, Berlin 1985.

[005] [6] R. H. Hudson, Class numbers of imaginary cyclic quartic fields and related quaternary systems, Pacific J. Math. 115 (1984), 129-142. | Zbl 0548.12002