Elliptic units of cyclic unramified extensions of complex quadratic fields
Farshid Hajir
Acta Arithmetica, Tome 64 (1993), p. 69-85 / Harvested from The Polish Digital Mathematics Library
Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:206536
@article{bwmeta1.element.bwnjournal-article-aav64i1p69bwm,
     author = {Farshid Hajir},
     title = {Elliptic units of cyclic unramified extensions of complex quadratic fields},
     journal = {Acta Arithmetica},
     volume = {64},
     year = {1993},
     pages = {69-85},
     zbl = {0787.11023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav64i1p69bwm}
}
Farshid Hajir. Elliptic units of cyclic unramified extensions of complex quadratic fields. Acta Arithmetica, Tome 64 (1993) pp. 69-85. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav64i1p69bwm/

[000] [1] H. Hayashi, On elliptic units and class number of a certain dihedral extension of degree 2l, Acta Arith. 44 (1984), 35-45. | Zbl 0499.12002

[001] [2] D. Kubert and S. Lang, Modular Units, Springer, 1981.

[002] [3] G. Robert, Concernant la relation de distribution satisfaite par la fonction ϕ associée à un réseau complexe, Invent. Math. 100 (1990), 231-257. | Zbl 0729.11029

[003] [4] C. L. Siegel, Lectures on Advanced Analytic Number Theory, Tata Institute of Fundamental Research, 1980.

[004] [5] H. M. Stark, L-functions at s=1. IV. First derivatives at s=0, Adv. in Math. 35 (1980), 197-235. | Zbl 0475.12018

[005] [6] F. R. Villegas, private communication.

[006] [7] L. Washington, Introduction to Cyclotomic Fields, Springer, 1982. | Zbl 0484.12001

[007] [8] H. Weber, Lehrbuch der Algebra, Vol. 3, Chelsea, 1961.