On the diophantine equation Dx²+D=2n+2
Maohua Le
Acta Arithmetica, Tome 64 (1993), p. 29-41 / Harvested from The Polish Digital Mathematics Library
Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:206533
@article{bwmeta1.element.bwnjournal-article-aav64i1p29bwm,
     author = {Maohua Le},
     title = {On the diophantine equation $D1x2 + D2 = 2^{n+2}$
            },
     journal = {Acta Arithmetica},
     volume = {64},
     year = {1993},
     pages = {29-41},
     zbl = {0783.11014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav64i1p29bwm}
}
Maohua Le. On the diophantine equation $D₁x² + D₂ = 2^{n+2}$
            . Acta Arithmetica, Tome 64 (1993) pp. 29-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav64i1p29bwm/

[000] [1] R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris Sér. A 251 (1960), 1263-1264. | Zbl 0093.04703

[001] [2] A. Baker, Contribution to the theory of diophantine equations I: On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A 263 (1967), 273-297.

[002] [3] V. I. Baulin, On an indeterminate equation of the third degree with least positive discriminant, Tul'sk. Gos. Ped. Inst. Uchen. Zap. Fiz.-Mat. Nauk Vyp. 7 (1960), 138-170 (in Russian).

[003] [4] E. Bender and N. Herzberg, Some diophantine equations related to the quadratic form ax²+by², in: Studies in Algebra and Number Theory, G.-C. Rota (ed.), Adv. in Math. Suppl. Stud. 6, Academic Press, San Diego 1979, 219-272.

[004] [5] F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arith. 38 (1981), 389-410. | Zbl 0371.10014

[005] [6] J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc. 39 (1964), 537-540. | Zbl 0127.26705

[006] [7] K. Győry and Z. Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, in: Studies in Pure Mathematics, Akadémiai Kiadó, Budapest 1983, 245-257. | Zbl 0518.10020

[007] [8] M.-H. Le, The divisibility of the class number for a class of imaginary quadratic fields, Kexue Tongbao (Chinese) 32 (1987), 724-727 (in Chinese).

[008] [9] M.-H. Le, On the number of solutions of the generalized Ramanujan-Nagell equation x²-D=2n+2, Acta Arith. 60 (1991), 149-167.

[009] [10] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass., 1983.

[010] [11] M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method III, Ann. Fac. Sci. Toulouse 97 (1989), 43-75. | Zbl 0702.11044

[011] [12] T. Nagell, The diophantine equation x²+7=2n, Ark. Mat. 4 (1960), 185-187 | Zbl 0103.03001