@article{bwmeta1.element.bwnjournal-article-aav64i1p29bwm, author = {Maohua Le}, title = {On the diophantine equation $D1x2 + D2 = 2^{n+2}$ }, journal = {Acta Arithmetica}, volume = {64}, year = {1993}, pages = {29-41}, zbl = {0783.11014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav64i1p29bwm} }
Maohua Le. On the diophantine equation $D₁x² + D₂ = 2^{n+2}$ . Acta Arithmetica, Tome 64 (1993) pp. 29-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav64i1p29bwm/
[000] [1] R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris Sér. A 251 (1960), 1263-1264. | Zbl 0093.04703
[001] [2] A. Baker, Contribution to the theory of diophantine equations I: On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A 263 (1967), 273-297.
[002] [3] V. I. Baulin, On an indeterminate equation of the third degree with least positive discriminant, Tul'sk. Gos. Ped. Inst. Uchen. Zap. Fiz.-Mat. Nauk Vyp. 7 (1960), 138-170 (in Russian).
[003] [4] E. Bender and N. Herzberg, Some diophantine equations related to the quadratic form ax²+by², in: Studies in Algebra and Number Theory, G.-C. Rota (ed.), Adv. in Math. Suppl. Stud. 6, Academic Press, San Diego 1979, 219-272.
[004] [5] F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arith. 38 (1981), 389-410. | Zbl 0371.10014
[005] [6] J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc. 39 (1964), 537-540. | Zbl 0127.26705
[006] [7] K. Győry and Z. Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, in: Studies in Pure Mathematics, Akadémiai Kiadó, Budapest 1983, 245-257. | Zbl 0518.10020
[007] [8] M.-H. Le, The divisibility of the class number for a class of imaginary quadratic fields, Kexue Tongbao (Chinese) 32 (1987), 724-727 (in Chinese).
[008] [9] M.-H. Le, On the number of solutions of the generalized Ramanujan-Nagell equation , Acta Arith. 60 (1991), 149-167.
[009] [10] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass., 1983.
[010] [11] M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method III, Ann. Fac. Sci. Toulouse 97 (1989), 43-75. | Zbl 0702.11044
[011] [12] T. Nagell, The diophantine equation , Ark. Mat. 4 (1960), 185-187 | Zbl 0103.03001