The Diophantine equation x2+qm=pn
Nobuhiro Terai
Acta Arithmetica, Tome 64 (1993), p. 351-358 / Harvested from The Polish Digital Mathematics Library
Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:206526
@article{bwmeta1.element.bwnjournal-article-aav63i4p351bwm,
     author = {Nobuhiro Terai},
     title = {The Diophantine equation $x^2 + q^m =p^n$
            },
     journal = {Acta Arithmetica},
     volume = {64},
     year = {1993},
     pages = {351-358},
     zbl = {0770.11020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav63i4p351bwm}
}
Nobuhiro Terai. The Diophantine equation $x^2 + q^m =p^n$
            . Acta Arithmetica, Tome 64 (1993) pp. 351-358. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav63i4p351bwm/

[000] [1] R. Alter and K. K. Kubota, The diophantine equation x² + D =pⁿ, Pacific J. Math. (1) 46 (1973), 11-16. | Zbl 0224.10016

[001] [2] L. Jeśmanowicz, Kilka uwag o liczbach pitagorejskich [ Some remarks on Pythagorean numbers], Wiadom. Mat. 1 (1956), 196-202. | Zbl 0074.27205

[002] [3] W. Ljunggren, Zur Theorie der Gleichung x² + 1=Dy⁴, Avh. Norske Vid. Akad. Oslo 5 (1942), 1-27. | Zbl 0027.01103

[003] [4] W. Sierpiński, O równaniu 3x+4y=5z [On the equation 3x+4y=5z], Wiadom. Mat. 1 (1956), 194-195.

[004] [5] W. Sierpiński, Elementary Theory of Numbers, PWN-Polish Scientific Publishers, Warszawa 1988. | Zbl 0638.10001

[005] [6] C. Störmer, L'équation m arctan(1/x) +n arctan(1/y) = k(π/4), Bull. Soc. Math. France 27 (1899), 160-170.