@article{bwmeta1.element.bwnjournal-article-aav63i3p255bwm, author = {Mark Sheingorn}, title = {The $\surd$p Riemann surface}, journal = {Acta Arithmetica}, volume = {64}, year = {1993}, pages = {255-266}, zbl = {0782.11014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav63i3p255bwm} }
Mark Sheingorn. The √p Riemann surface. Acta Arithmetica, Tome 64 (1993) pp. 255-266. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav63i3p255bwm/
[000] [1] M. Akbas and D. Singerman, Symmetries of modular surfaces, preprint.
[001] [2] N. C. Ankeny, E. Artin and S. Chowla, The class number of real quadratic fields, Ann. of Math. (2) 56 (1952), 479-493. | Zbl 0049.30605
[002] [3] L. K. Hua, Introduction to Number Theory, Springer, New York 1981.
[003] [4] R. Moeckel, Geodesics on modular surfaces and continued fractions, Ergodic Theory Dynamical Systems 2 (1982), 69-83. | Zbl 0497.10007
[004] [5] R. Mollin and H. C. Williams, Class number one for real quadratic fields, continued fractions, and reduced ideals, in: Canadian Number Theory Association Conference Proceedings (Banff, 1988), R. Mollin (ed.), W. de Gruyter, Berlin 1990, 417-425.
[005] [6] R. Ruedy, Symmetric embeddings of Riemann surfaces, in: Discontinuous Groups and Riemann Surfaces, Proc. Conf. (Univ. Maryland, College Park, Md., 1973), Ann. of Math. Stud. 79, Princeton Univ. Press, Princeton, N.J., 1974, 409-418.
[006] [7] M. Sheingorn, Hyperbolic reflections on Pell's equation, J. Number Theory 33 (1989), 267-285. | Zbl 0692.10019