The main purpose of the reduction theory is to construct a fundamental domain of the unimodular group acting discontinuously on the space of positive definite quadratic forms. This fundamental domain is for example used in the theory of automorphic forms for GLₙ (cf. [11]) or in the theory of Siegel modular forms (cf. [1], [4]). There are several ways of reduction, which are usually based on various minima of the quadratic form, e.g. the Korkin-Zolotarev method (cf. [10], [3]), Venkov's method (cf. [12]) or Voronoï's approach (cf. [13]), which also works in the general setting of positivity domains (cf. [5]). The most popular method is Minkowski's reduction theory [6] and its generalizations (cf. [9], [15]). Minkowski's reduction theory is based on attaining certain minima, which can be characterized as the successive primitive minima of the quadratic form. Besides these we have successive minima, but a reduction according to successive minima only works for n ≤ 4 (cf. [14]). In this paper we introduce so-called primitive minima}, which lie between successive and successive primitive minima (cf. Theorem 2). Using primitive minima we obtain a straightforward generalization of Hermite's inequality in Theorem 1. As an application we get a simple proof for the finiteness of the class number. Finally we describe relations with Rankin's minima (cf. [8]) and with Venkov's reduction (cf. [12]).
@article{bwmeta1.element.bwnjournal-article-aav63i1p91bwm, author = {Aloys Krieg}, title = {Primitive minima of positive definite quadratic forms}, journal = {Acta Arithmetica}, volume = {64}, year = {1993}, pages = {91-96}, zbl = {0780.11034}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav63i1p91bwm} }
Aloys Krieg. Primitive minima of positive definite quadratic forms. Acta Arithmetica, Tome 64 (1993) pp. 91-96. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav63i1p91bwm/
[000] [1] A. N. Andrianov, Quadratic Forms and Hecke Operators, Grundlehren Math. Wiss. 286, Springer, Berlin 1987. | Zbl 0613.10023
[001] [2] E. S. Barnes and M. J. Cohn, On the inner product of positive quadratic forms, J. London Math. Soc. (2) 12 (1975), 32-36. | Zbl 0312.10013
[002] [3] D. Grenier, Fundamental domains for the general linear group, Pacific J. Math. 132 (1988), 293-317. | Zbl 0699.10045
[003] [4] H. Klingen, Introductory Lectures on Siegel Modular Forms, Cambridge University Press, Cambridge 1990. | Zbl 0693.10023
[004] [5] M. Koecher, Beiträge zu einer Reduktionstheorie in Positivitätsbereichen I, Math. Ann. 141 (1960), 384-432. | Zbl 0095.25301
[005] [6] H. Minkowski, Diskontinuitätsbereich für arithmetische Äquivalenz, J. Reine Angew. Math. 129 (1905), 220-274.
[006] [7] M. Newman, Integral Matrices, Academic Press, New York 1972.
[007] [8] R. A. Rankin, On positive definite quadratic forms, J. London Math. Soc. 28 (1953), 309-319. | Zbl 0050.27401
[008] [9] S. S. Ryshkov, On the Hermite-Minkowski reduction theory for positive quadratic forms, J. Soviet Math. 6 (1976), 651-671. | Zbl 0374.10019
[009] [10] S. S. Ryshkov and E. P. Baranovskiĭ, Classical methods in the theory of lattice packings, Russian Math. Surveys 34 (4) (1979), 1-68. | Zbl 0441.52008
[010] [11] A. Terras, Harmonic Analysis on Symmetric Spaces and Applications II, Springer, New York 1988.
[011] [12] A. B. Venkov, On the reduction of positive quadratic forms, Izv. Akad. Nauk SSSR Ser. Mat. 4 (1940), 37-52 (in Russian).
[012] [13] G. Voronoï, Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math. 133 (1907), 97-178. | Zbl 38.0261.01
[013] [14] B. L. van der Waerden, Die Reduktionstheorie der positiven quadratischen Formen, Acta Math. 96 (1956), 263-309. | Zbl 0072.03601
[014] [15] H. Weyl, Theory of reduction for arithmetical equivalence, Trans. Amer. Math. Soc. 48 (1940), 126-164. | Zbl 0024.14802