Metric properties of generalized Cantor products
Y. Lacroix
Acta Arithmetica, Tome 64 (1993), p. 61-77 / Harvested from The Polish Digital Mathematics Library
Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:206507
@article{bwmeta1.element.bwnjournal-article-aav63i1p61bwm,
     author = {Y. Lacroix},
     title = {Metric properties of generalized Cantor products},
     journal = {Acta Arithmetica},
     volume = {64},
     year = {1993},
     pages = {61-77},
     zbl = {0774.11042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav63i1p61bwm}
}
Y. Lacroix. Metric properties of generalized Cantor products. Acta Arithmetica, Tome 64 (1993) pp. 61-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav63i1p61bwm/

[000] [Eng] F. Engel, Entwicklung der Zahlen nach Stammbrüchen, in: Verhandlungen des 52sten Versammlung deutscher Philologen und Schulmänner in Marburg vom 29. September bis 3. October 1913, Leipzig 1914, 190-191.

[001] [Esc] E. B. Escott, Rapid method for extracting a square root, Amer. Math. Monthly 44 (1937), 644-646. | Zbl 63.0525.05

[002] [Ga-Ko] I. S. Gál et J. F. Koksma, Sur l'ordre de grandeur des fonctions sommables, C. R. Acad. Sci. Paris 227 (1948), 1321-1325. | Zbl 0041.02404

[003] [Gal] J. Galambos, Representations of Real Numbers by Infinite Series, Lecture Notes in Math. 502, Springer, 1976. | Zbl 0322.10002

[004] [Go-Sm] C. Goldie and R. L. Smith, On the denominators in Sylvester's series, Proc. London Math. Soc. (3) 54 (1987), 445-476. | Zbl 0587.10028

[005] [Khi] A. Ya. Khinchin, Continued Fractions, 3rd ed., Phoenix Books, The University of Chicago Press, 1935.

[006] [Kn-Kn] A. Knopfmacher and J. Knopfmacher, A new infinite product representation for real numbers, Monatsh. Math. 104 (1987), 29-44. | Zbl 0624.10008

[007] [Ku-Ni] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Pure and Appl. Math., Wiley Interscience Series of Texts, Monographs, and Tracts, 1974.

[008] [La-Th] Y. Lacroix and A. Thomas, Number systems and repartition mod 1, J. Number Theory, to appear.

[009] [MF-VP] M. Mendès France and A. J. van der Poorten, From geometry to Euler identities, Theoret. Comput. Sci. 65 (1989), 213-220.

[010] [Opp] A. Oppenheim, On the representation of real numbers by products of rational numbers, Quart. J. Math. Oxford Ser. (2) 4 (1953), 303-307. | Zbl 0053.03903

[011] [Ost] A. Ostrowski, Über einige Verallgemeinerungen des Eulerschen Produktes ν=0(1+x2ν)=1/(1-x), Verh. Naturforsch. Ges. Basel 11 (1929), 153-214.

[012] [Per] O. Perron, Irrazionalzahlen, Chelsea, New York 1948.

[013] [Pet] K. Petersen, Ergodic Theory, Cambridge Stud. Adv. Math. 2, Cambridge University Press, 1983.

[014] [Phi] W. Philipp, Some metrical theorems in number theory, Pacific J. Math. 20 (1967), 109-127. | Zbl 0144.04201

[015] [Sch] F. Schweiger, Ergodic properties of fibered systems, draft version, Institut für Math. der Universität Salzburg, 1989.

[016] [Sch-1] F. Schweiger, Metrische Sätze über Oppenheimentwicklungen, J. Reine Angew. Math. 254 (1972), 152-159. | Zbl 0234.10040

[017] [Sie-1] W. Sierpiński, On certain expansions of real numbers into infinite fast converging products, Prace Mat. 2 (1958), 131-138 (in Polish; Russian and English summaries).

[018] [Sie-2] W. Sierpiński, Généralisation d'une formule de E. B. Escott pour les racines carrées, Bull. Soc. Roy. Sci. Liège 22 (1953), 520-529. | Zbl 0053.03904

[019] [Sta] P. Stambul, private communication.

[020] [Ver] W. Vervaat, Success Epochs in Bernoulli Trials (with Applications in Number Theory), Math. Center Tracts 42, Mathematisch Centrum, Amsterdam 1972.