Points at rational distance from the vertices of a triangle
T. G. Berry
Acta Arithmetica, Tome 62 (1992), p. 391-398 / Harvested from The Polish Digital Mathematics Library
Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:206501
@article{bwmeta1.element.bwnjournal-article-aav62i4p391bwm,
     author = {T. G. Berry},
     title = {Points at rational distance from the vertices of a triangle},
     journal = {Acta Arithmetica},
     volume = {62},
     year = {1992},
     pages = {391-398},
     zbl = {0758.11019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav62i4p391bwm}
}
T. G. Berry. Points at rational distance from the vertices of a triangle. Acta Arithmetica, Tome 62 (1992) pp. 391-398. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav62i4p391bwm/

[000] [1] J. H. J. Almering, Rational quadrilaterals, Indag. Mat. 25 (1963), 192-199.

[001] [2] T. G. Berry, Points at rational distance from the corners of a unit square, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1990), 505-529. | Zbl 0726.11041

[002] [3] A. Bremner and R. K. Guy, A dozen difficult diophantine dilemmas, Amer. Math. Monthly 95 (1988), 31-36. | Zbl 0647.10017

[003] [4] A. Bremner and R. K. Guy, The delta-lambda configurations in tiling the square, J. Number Theory 32 (1989), 263-280. | Zbl 0678.05013

[004] [5] R. K. Guy, Tiling the square with rational triangles, in: Number Theory and Applications, R. A. Mollin (ed.), NATO Adv. Study Inst. Ser. C 265, Kluwer, 1989, 45-101. | Zbl 0748.05046

[005] [6] W. H. Hudson, Kummer's Quartic Surface, reprinted, with foreword by W. Barth, Cambridge University Press, 1990. | Zbl 0716.14025

[006] [7] S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983. | Zbl 0528.14013

[007] [8] G. Salmon, A Treatise on Conic Sections, Chelsea, 1954.

[008] [9] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20-59. | Zbl 0226.14013

[009] [10] T. Skolem, Diophantische Gleichungen, Chelsea, 1956.