@article{bwmeta1.element.bwnjournal-article-aav62i4p391bwm, author = {T. G. Berry}, title = {Points at rational distance from the vertices of a triangle}, journal = {Acta Arithmetica}, volume = {62}, year = {1992}, pages = {391-398}, zbl = {0758.11019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav62i4p391bwm} }
T. G. Berry. Points at rational distance from the vertices of a triangle. Acta Arithmetica, Tome 62 (1992) pp. 391-398. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav62i4p391bwm/
[000] [1] J. H. J. Almering, Rational quadrilaterals, Indag. Mat. 25 (1963), 192-199.
[001] [2] T. G. Berry, Points at rational distance from the corners of a unit square, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1990), 505-529. | Zbl 0726.11041
[002] [3] A. Bremner and R. K. Guy, A dozen difficult diophantine dilemmas, Amer. Math. Monthly 95 (1988), 31-36. | Zbl 0647.10017
[003] [4] A. Bremner and R. K. Guy, The delta-lambda configurations in tiling the square, J. Number Theory 32 (1989), 263-280. | Zbl 0678.05013
[004] [5] R. K. Guy, Tiling the square with rational triangles, in: Number Theory and Applications, R. A. Mollin (ed.), NATO Adv. Study Inst. Ser. C 265, Kluwer, 1989, 45-101. | Zbl 0748.05046
[005] [6] W. H. Hudson, Kummer's Quartic Surface, reprinted, with foreword by W. Barth, Cambridge University Press, 1990. | Zbl 0716.14025
[006] [7] S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983. | Zbl 0528.14013
[007] [8] G. Salmon, A Treatise on Conic Sections, Chelsea, 1954.
[008] [9] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20-59. | Zbl 0226.14013
[009] [10] T. Skolem, Diophantische Gleichungen, Chelsea, 1956.