Arithmetic properties of periodic points of quadratic maps
Patrick Morton
Acta Arithmetica, Tome 62 (1992), p. 343-372 / Harvested from The Polish Digital Mathematics Library
Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:206498
@article{bwmeta1.element.bwnjournal-article-aav62i4p343bwm,
     author = {Patrick Morton},
     title = {Arithmetic properties of periodic points of quadratic maps},
     journal = {Acta Arithmetica},
     volume = {62},
     year = {1992},
     pages = {343-372},
     zbl = {0767.11016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav62i4p343bwm}
}
Patrick Morton. Arithmetic properties of periodic points of quadratic maps. Acta Arithmetica, Tome 62 (1992) pp. 343-372. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav62i4p343bwm/

[000] [a] Modular Functions of One Variable IV, Lecture Notes in Math. 476, Springer, 1975.

[001] [cm] A. R. Calderbank and P. Morton, Quasi-symmetric 3-designs and elliptic curves, SIAM J. Discrete Math. 3 (1990), 178-196. | Zbl 0742.05013

[002] [d] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197-272. | Zbl 0025.02003

[003] [fa] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349-366.

[004] [fj] M. Fried and M. Jarden, Field Arithmetic, Ergeb. Math. Grenzgeb. 11, Springer, 1980.

[005] [h1] H. Hasse, Zahlentheorie, Akademische Verlagsgesellschaft, Berlin 1969.

[006] [h2] H. Hasse, Zur Theorie der abstrakten elliptischen Funktionenkörper I, II, III, J. Reine Angew. Math. 175 (1936), 55-62, 69-88, 193-208.

[007] [h3] H. Hasse, Vorlesungen über Klassenkörpertheorie, Physica-Verlag, Würzburg 1967. | Zbl 0148.28005

[008] [m1] P. Morton and P. Patel, The Galois theory of periodic points of iterated polynomial maps, Wellesley College, 1992. | Zbl 0792.11043

[009] [m2] P. Morton, Periodic points of quadratic maps in characteristic 7, Wellesley College, 1992.

[010] [m3] P. Morton, Characterizing cyclic cubic extensions by automorphism polynomials, J. Number Theory, to appear. | Zbl 0810.12003

[011] [n] W. Narkiewicz, Polynomial cycles in algebraic number fields, Colloq. Math. 58 (1989), 151-155. | Zbl 0703.12002

[012] [o1] R. W. K. Odoni, The Galois theory of iterates and composites of polynomials, Proc. London Math. Soc. 51 (1985), 385-414. | Zbl 0622.12011

[013] [o2] R. W. K. Odoni, Realising wreath products of cyclic groups as Galois groups, Mathematika 35 (1988), 101-113. | Zbl 0662.12010

[014] [pa] P. Patel, Topics in Computational Galois Theory, Honors thesis, Wellesley College, 1991.

[015] [s] A. Schinzel, Selected Topics on Polynomials, University of Michigan Press, 1982. | Zbl 0487.12002

[016] [si] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer, 1986.

[017] [vh] F. Vivaldi and S. Hatjispyros, Galois theory of periodic orbits of rational maps, Nonlinearity 5 (1992), 961-978. | Zbl 0767.11049