On the degrees of irreducible factors of higher order Bernoulli polynomials
Arnold Adelberg
Acta Arithmetica, Tome 62 (1992), p. 329-342 / Harvested from The Polish Digital Mathematics Library
Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:206497
@article{bwmeta1.element.bwnjournal-article-aav62i4p329bwm,
     author = {Arnold Adelberg},
     title = {On the degrees of irreducible factors of higher order Bernoulli polynomials},
     journal = {Acta Arithmetica},
     volume = {62},
     year = {1992},
     pages = {329-342},
     zbl = {0771.11013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav62i4p329bwm}
}
Arnold Adelberg. On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arithmetica, Tome 62 (1992) pp. 329-342. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav62i4p329bwm/

[000] [1] A. Adelberg, A finite difference approach to degenerate Bernoulli and Stirling polynomials, Discrete Math., submitted.

[001] [2] A. Adelberg, Irreducible factors and p-adic poles of higher order Bernoulli polynomials, C. R. Math. Rep. Acad. Sci. Canada 14 (1992), 173-178. | Zbl 0771.11014

[002] [3] J. Brillhart, On the Euler and Bernoulli polynomials, J. Reine Angew. Math. 234 (1969), 45-64.

[003] [4] L. Carlitz, Note on irreducibility of the Bernoulli and Euler polynomials, Duke Math. J. 19 (1952), 475-481. | Zbl 0047.25401

[004] [5] L. Carlitz, The irreducibility of the Bernoulli polynomial B14(x), Math. Comp. 19 (1965), 667-670. | Zbl 0135.01703

[005] [6] N. Kimura, On the degree of an irreducible factor of the Bernoulli polynomials, Acta Arith. 50 (1988), 243-249. | Zbl 0655.10008

[006] [7] P. J. McCarthy, Irreducibility of certain Bernoulli polynomials, Amer. Math. Monthly 68 (1961), 352-353. | Zbl 0098.24803

[007] [8] P. J. McCarthy, Some irreducibility theorems for Bernoulli polynomials of higher order, Duke Math. J. 27 (1960), 313-318. | Zbl 0178.37302

[008] [9] P. J. McCarthy, Irreducibility of Bernoulli polynomials of higher order, Canad. J. Math. 14 (1962), 565-567. | Zbl 0118.26001

[009] [10] I. Niven, H. Zuckerman and H. Montgomery, An Introduction to the Theory of Numbers, 5th ed., Wiley, 1991. | Zbl 0742.11001

[010] [11] N. E. Nörlund, Differenzenrechnung, Springer, 1924.

[011] [12] S. Roman, The Umbral Calculus, Academic Press, 1984. | Zbl 0536.33001