A quantitative version of Runge's theorem on diophantine equations
P. G. Walsh
Acta Arithmetica, Tome 62 (1992), p. 157-172 / Harvested from The Polish Digital Mathematics Library
Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:206487
@article{bwmeta1.element.bwnjournal-article-aav62i2p157bwm,
     author = {P. G. Walsh},
     title = {A quantitative version of Runge's theorem on diophantine equations},
     journal = {Acta Arithmetica},
     volume = {62},
     year = {1992},
     pages = {157-172},
     zbl = {0769.11017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav62i2p157bwm}
}
P. G. Walsh. A quantitative version of Runge's theorem on diophantine equations. Acta Arithmetica, Tome 62 (1992) pp. 157-172. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav62i2p157bwm/

[000] [1] Y. André, G-functions and Geometry, Vieweg, Braunschweig 1989.

[001] [2] M. Ayad, Sur le théorème de Runge, Acta Arith. 58 (1991), 203-209. | Zbl 0785.11018

[002] [3] J. Coates, Construction of rational functions on a curve, Proc. Cambridge Philos. Soc. 68 (1970), 105-123. | Zbl 0215.37302

[003] [4] B. M. Dwork and A. J. van der Poorten, The Eisenstein constant, Macquarie Math. reports, report No.90-0062R (1991). (To appear in Duke Math. J.).

[004] [5] M. Eichler, Introduction to the Theory of Algebraic Numbers and Functions, Academic Press, London 1966.

[005] [6] G. Eisenstein, Über eine allgemeine Eigenschaft der Reihen-Entwicklungen aller algebraischen Funktionen, Bericht Königl. Preuss. Akad. d. Wiss. zu Berlin (1852), 441-443.

[006] [7] W. J. Ellison, Variations sur un thème de Carl Runge, Séminaire Delange-Pisot- Poitou 13 (1970-71), 9.01-9.04.

[007] [8] A. Grytczuk and A. Schinzel, On Runge's theorem about diophantine equations, to appear in Colloq. Math. Soc. J. Bolyai 60, 1992.

[008] [9] C. Hermite, Cours de M. Hermite rédigé en 1882, 4th ed., Hermann, Paris 1891.

[009] [10] D. L. Hilliker and E. G. Straus, Determination of bounds for the solutions to those binary diophantine equations that satisfy the hypotheses of Runge's Theorem, Trans. Amer. Math. Soc. 280 (1983), 637-657. | Zbl 0528.10011

[010] [11] D. L. Hilliker and E. G. Straus, On Puiseux series whose curves pass through an infinity of algebraic lattice points, Bull. Amer. Math. Soc. (N.S.) 8 (1983), 59-62. | Zbl 0514.14009

[011] [12] D. W. Masser, Polynomial bound for Diophantine equations, Amer. Math. Monthly 93 (1980), 486-488.

[012] [13] L. J. Mordell, Diophantine Equations, Academic Press, London 1969.

[013] [14] C. Runge, Über ganzzahlige Lösungen von Gleichungen zwischen zwei Veränder- lichen, J. Reine Angew. Math. 100 (1887), 425-435. | Zbl 19.0076.03

[014] [15] A. Schinzel, An improvement of Runge's Theorem on diophantine equations, Comment. Pontificia Acad. Sci. 2 (1969), 1-9. | Zbl 0297.10009

[015] [16] W. M. Schmidt, Eisenstein's theorem on power series expansions of algebraic functions, Acta Arith. 56 (1990), 161-179. | Zbl 0659.12003

[016] [17] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, Cambridge 1986. | Zbl 0606.10011

[017] [18] T. Skolem, Diophantische Gleichungen, J. Springer, Berlin 1938; reprinted by Chelsea, New York 1950.

[018] [19] V. G. Sprindžuk, Classical Diophantine Equations in Two Unknowns, Nauka, Moskva 1982 (in Russian).

[019] [20] J. Turk, On the difference between perfect powers, Acta Arith. 45 (1986), 289-307. | Zbl 0587.10010

[020] [21] R. J. Walker, Algebraic Curves, Princeton University Press, Princeton, New Jersey, 1950. | Zbl 0039.37701