Minoration au point 1 des fonctions L et détermination des corps sextiques abéliens totalement imaginaires principaux
Stéphane Louboutin
Acta Arithmetica, Tome 62 (1992), p. 109-124 / Harvested from The Polish Digital Mathematics Library
Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:206484
@article{bwmeta1.element.bwnjournal-article-aav62i2p109bwm,
     author = {St\'ephane Louboutin},
     title = {Minoration au point 1 des fonctions L et d\'etermination des corps sextiques ab\'eliens totalement imaginaires principaux},
     journal = {Acta Arithmetica},
     volume = {62},
     year = {1992},
     pages = {109-124},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav62i2p109bwm}
}
Stéphane Louboutin. Minoration au point 1 des fonctions L et détermination des corps sextiques abéliens totalement imaginaires principaux. Acta Arithmetica, Tome 62 (1992) pp. 109-124. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav62i2p109bwm/

[000] [1] H. Davenport, Multiplicative Number Theory, Graduate Texts in Math.74, 2nd ed., Springer, 1980.

[001] [2] H. Delange, Une remarque sur la dérivée logarithmiquede la fonction zêta de Riemann, Colloq. Math. 53 (1987),333-335. | Zbl 0637.10027

[002] [3] K. Hardy, R. H. Hudson, D. Richman and K. S. Williams, Determination of all imaginary cyclic quartic fields with class number 2, Trans. Amer. Math. Soc. 311 (1989), 1-55. | Zbl 0678.12003

[003] [4] E. Landau, Über Dirichletsche Reihen mit komplexenCharakteren, J. Reine Angew. Math. 157 (1926), 26-32.

[004] [5] A. J. Lazarus, On the class number and unit index ofsimplest quartic fields, Nagoya Math. J. 121 (1991), 1-13.

[005] [6] S. Louboutin, Majoration au point 1 des fonctions Lassociées aux caractères de Dirichlet primitifs, ou au caractère d'uneextension quadratique d'un corps quadratique imaginaire principal, J. Reine Angew. Math. 419 (1991), 213-219. | Zbl 0721.11049

[006] [7] J. M. Masley and H. L. Montgomery, Cyclotomic fields withunique factorization, J. Reine Angew. Math. 286/287 (1976), 248-256. | Zbl 0335.12013

[007] [8] B. Setzer, The determination of all imaginary, quartic, abelian number fields with class number 1, Math. Comp. 35 (1980),1383-1386. | Zbl 0455.12004

[008] [9] H. M. Stark, Some effective cases of the Brauer-Siegeltheorem, Invent. Math. 23 (1974), 135-152.

[009] [10] K. Uchida, Imaginary abelian number fields with classnumber one, Tôkohu Math. J. 24 (1972), 487-499. | Zbl 0248.12007

[010] [11] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer, 1982.