@article{bwmeta1.element.bwnjournal-article-aav62i1p61bwm, author = {R. Nair}, title = {On certain solutions of the diophantine equation x-y = p(z)}, journal = {Acta Arithmetica}, volume = {62}, year = {1992}, pages = {61-71}, zbl = {0776.11006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav62i1p61bwm} }
R. Nair. On certain solutions of the diophantine equation x-y = p(z). Acta Arithmetica, Tome 62 (1992) pp. 61-71. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav62i1p61bwm/
[000] [1] V. Bergelson, Sets of recurrence of -actionsand properties of sets of differences in , J. London Math. Soc. (2) 31 (1985), 295-304. | Zbl 0579.10029
[001] [2] A. Bertrand-Mathis, Ensembles intersectifs et recurrence de Poincaré, Israel J. Math. 55 (1986), 184-198. | Zbl 0611.10032
[002] [3] H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of Szemerédi onarithmetic progressions, J. Analyse Math. 31 (1977), 204-256. | Zbl 0347.28016
[003] [4] H. Furstenberg, Recurrence in Ergodic Theory andCombinatorial Number Theory, Princeton University Press, 1981.
[004] [5] L. K. Hua, Additive Theory of Prime Numbers, Amer. Math. Soc.Transl. 13, 1965. | Zbl 0192.39304
[005] [6] T. Kamae and M. Mendès France, Van der Corput's difference theorem, Israel J. Math. 31 (1978),335-342. | Zbl 0396.10040
[006] [7] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math. 6, 1985.
[007] [8] R. Nair, On strong uniform distribution, Acta Arith. 56 (1990), 183-193. | Zbl 0716.11036
[008] [9] G. Rhin, Sur la répartition modulo 1 des suites f(p), Acta Arith. 23 (1973), 217-248.
[009] [10] A. Sárközy, On difference sets of sequences of integers, II, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 21(1978), 45-53. | Zbl 0413.10051
[010] [11] A. Sárközy, On difference sets of sequences ofintegers. III, Acta Math. Acad. Sci. Hungar. 31 (3-4) (1978),355-386.
[011] [12] H. Weyl, Über die Gleichverteilung von Zahlenmod. Eins, Math. Ann. 77 (1916), 313-352. | Zbl 46.0278.06