On the number of prime factors of a finite arithmetical progression
T. N. Shorey ; R. Tijdeman
Acta Arithmetica, Tome 62 (1992), p. 375-390 / Harvested from The Polish Digital Mathematics Library
Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:206473
@article{bwmeta1.element.bwnjournal-article-aav61i4p375bwm,
     author = {T. N. Shorey and R. Tijdeman},
     title = {On the number of prime factors of a finite arithmetical progression},
     journal = {Acta Arithmetica},
     volume = {62},
     year = {1992},
     pages = {375-390},
     zbl = {0773.11011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav61i4p375bwm}
}
T. N. Shorey; R. Tijdeman. On the number of prime factors of a finite arithmetical progression. Acta Arithmetica, Tome 62 (1992) pp. 375-390. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav61i4p375bwm/

[000] [1] A. Baker, The theory of linear forms in logarithms, in: Transcendence Theory: Advances and Applications, A. Baker and D. W. Masser (eds.), Academic Press, 1977, 1-27.

[001] [2] A. Baker and H. M. Stark, On a fundamental inequality in number theory, Ann. of Math. 94 (1971), 190-199. | Zbl 0219.12009

[002] [3] K. Győry, Explicit upper bounds for the solutions of some diophantine equations, Ann. Acad. Sci. Fenn. Ser. AI 5 (1980), 3-12. | Zbl 0402.10018

[003] [4] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford University Press, 1988. | Zbl 0020.29201

[004] [5] P. Moree, On arithmetical progressions having few different prime factors in comparison with their lengths, to appear. | Zbl 0821.11044

[005] [6] G. Pólya, Zur arithmetischen Untersuchung der Polynome, Math. Z. 1 (1918), 143-148.

[006] [7] K. Ramachandra, T. N. Shorey and R. Tijdeman, On Grimm's problem relating to factorisation of a block of consecutive integers, J. Reine Angew. Math. 273 (1975), 109-124. | Zbl 0297.10031

[007] [8] T. N. Shorey and R. Tijdeman, On the number of prime factors of an arithmetical progression, J. Sichuan Univ. 26 (1990), 72-74. | Zbl 0709.11004

[008] [9] T. N. Shorey and R. Tijdeman, On the greatest prime factor of an arithmetical progression III, in: Diophantine Approximation and Transcendental Numbers, Luminy 1990, Ph. Philippon (ed.), to appear. | Zbl 0709.11004

[009] [10] R. Tijdeman, On the product of the terms of a finite arithmetic progression, in: Proc. Conf. Diophantine Approximations and Transcendence Theory, RIMS Kokyuroku 708, Kyoto Univ., Kyoto 1989, 51-62.

[010] [11] K. Yu, Linear forms in the p-adic logarithms, Acta Arith. 53 (1989), 107-186. | Zbl 0699.10050