@article{bwmeta1.element.bwnjournal-article-aav61i3p233bwm, author = {R. A. Mollin and H. C. Williams}, title = {Consecutive powers in continued fractions}, journal = {Acta Arithmetica}, volume = {62}, year = {1992}, pages = {233-264}, zbl = {0764.11010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav61i3p233bwm} }
R. A. Mollin; H. C. Williams. Consecutive powers in continued fractions. Acta Arithmetica, Tome 62 (1992) pp. 233-264. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav61i3p233bwm/
[000] [1] L. Bernstein, Fundamental units and cycles, J. Number Theory 8 (1976), 446-491. | Zbl 0352.10002
[001] [2] L. Bernstein, Fundamental units and cycles in the period of real quadratic number fields, Part II, Pacific J. Math. 63 (1976), 63-78. | Zbl 0335.10011
[002] [3] G. Chrystal, Textbook of Algebra, part 2, 2nd ed., Dover Reprints, N.Y., 1969, 423-490.
[003] [4] M. D. Hendy, Applications of a continued fraction algorithm to some class number problems, Math. Comp. 28 (1974), 267-277. | Zbl 0275.12007
[004] [5] C. Levesque, Continued fraction expansions and fundamental units, J. Math. Phys. Sci. 22 (1988), 11-44. | Zbl 0645.10010
[005] [6] C. Levesque and G. Rhin, A few classes of periodic continued fractions, Utilitas Math. 30 (1986), 79-107. | Zbl 0615.10014
[006] [7] R. A. Mollin, Prime powers in continued fractions related to the class number one problem for real quadratic fields, C. R. Math. Rep. Acad. Sci. Canada 11 (1989), 209-213. | Zbl 0705.11061
[007] [8] R. A. Mollin, Powers in continued fractions and class numbers of real quadratic fields, Utilitas Math., to appear. | Zbl 0776.11002
[008] [9] R. A. Mollin and H. C. Williams, Powers of 2, continued fractions and the class number one problem for real quadratic fields ℚ(√d) with d ≡ 1 (mod 8), in: The Mathematical Heritage of C. F. Gauss, G. M. Rassias (ed.), World Sci., 1991, 505-516. | Zbl 0771.11006
[009] [10] O. Perron, Die Lehre von den Kettenbrüchen, Teubner, Stuttgart 1977. | Zbl 43.0283.04
[010] [11] D. Shanks, The infrastructure of a real quadratic field and its applications, in: Proc. 1972 Number Theory Conf., Univ. of Colorado, Boulder, Colo., 1973, 217-224.
[011] [12] H. C. Williams, A note on the period length of the continued fraction expansion of certain √D, Utilitas Math. 28 (1985), 201-209. | Zbl 0586.10004
[012] [13] H. C. Williams and M. C. Wunderlich, On the parallel generation of the residues for the continued fraction factoring algorithm, Math. Comp. 177(1987), 405-423. | Zbl 0617.10005