@article{bwmeta1.element.bwnjournal-article-aav61i2p143bwm, author = {A. Smati}, title = {Evaluation effective du nombre d'entiers n tels que $\phi$(n) $\leq$ x}, journal = {Acta Arithmetica}, volume = {62}, year = {1992}, pages = {143-159}, zbl = {0726.11054}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav61i2p143bwm} }
A. Smati. Evaluation effective du nombre d'entiers n tels que φ(n) ≤ x. Acta Arithmetica, Tome 62 (1992) pp. 143-159. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav61i2p143bwm/
[000] [1] M. Balazard and A. Smati, Elementary proof of a theorem of Bateman, dans : Analytic Number Theory, Proc. Conf. in Honor of Paul T. Bateman, Allerton Park, Ill., 1989, Progr. Math. 85, Birkhäuser, Boston 1990, 41-46.
[001] [2] P. T. Bateman, The distribution of values of the Euler function, Acta Arith. 21 (1972), 329-345. | Zbl 0217.31901
[002] [3] R. E. Dressler, A density which counts multiplicity, Pacific J. Math. 34 (1970), 371-378. | Zbl 0181.05302
[003] [4] P. Erdős, Some remarks on Euler's ϕ-function and some related problems, Bull. Amer. Math. Soc. 51 (1945), 540-544. | Zbl 0061.08005
[004] [5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, Oxford 1979. | Zbl 0423.10001
[005] [6] J.-L. Nicolas, Distribution des valeurs de la fonction d'Euler, Enseign. Math. 30 (1984), 331-338. | Zbl 0553.10036
[006] [7] D. P. Parent, Exercises de théorie des nombres, Gauthier-Villars, Paris 1978.
[007] [8] H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhäuser, 1985. | Zbl 0582.10001
[008] [9] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. | Zbl 0122.05001
[009] [10] A. Smati, Répartition des valeurs de la fonction d'Euler, Enseign. Math. 35 (1989), 61-76. | Zbl 0684.10002
[010] [11] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. Elie Cartan 13, Université de Nancy, 1990