@article{bwmeta1.element.bwnjournal-article-aav61i2p101bwm, author = {Antone Costa}, title = {Modular forms and class number congruences}, journal = {Acta Arithmetica}, volume = {62}, year = {1992}, pages = {101-118}, zbl = {0773.11066}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav61i2p101bwm} }
Antone Costa. Modular forms and class number congruences. Acta Arithmetica, Tome 62 (1992) pp. 101-118. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav61i2p101bwm/
[000] [1] Y. Amice et J. Fresnel, Fonctions zêta p-adiques des corps de nombres abéliens réels, Acta Arith. 20 (1972), 353-384. | Zbl 0217.04303
[001] [2] P. Barrucand and H. Cohn, Note on primes of type x²+32y², class number, and residuacity, J. Reine Angew. Math. 238 (1969), 67-70. | Zbl 0207.36202
[002] [3] H. Cohn and G. Cooke, Parametric form of an eight class field, Acta Arith. 30 (1976), 367-377. | Zbl 0299.12004
[003] [4] P. Colmez, Résidu en s=1 des fonctions zêta p-adiques, Invent. Math. 91 (1988), 371-389. | Zbl 0651.12010
[004] [5] P. Conner and J. Hurrelbrink, Class Number Parity, Ser. Pure Math. 8, World Scientific, 1988. | Zbl 0743.11061
[005] [6] A. Costa, Modular forms and class number congruences, Ph.D. thesis, University of Pennsylvania, 1989.
[006] [7] P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227-286. | Zbl 0434.12009
[007] [8] P.-J. Desnoux, Congruences dyadiques entre nombres de classes de corps quadratiques, Manuscripta Math. 62 (1988), 163-179. | Zbl 0664.12002
[008] [9] G. Gras, Relations congruentielles linéaires entre nombres de classes de corps quadratiques, Acta Arith. 52 (1989), 147-162. | Zbl 0618.12004
[009] [10] K. Hardy and K. Williams, Congruences modulo 16 for the class numbers of complex quadratic fields, J. Number Theory 27 (1989), 178-195. | Zbl 0622.12005
[010] [11] M. Hikita, On the congruences for the class numbers of the quadratic fields whose discriminants are divisible by 8, J. Number Theory 23 (1986), 86-101. | Zbl 0587.12002
[011] [12] P. Kaplan, Unités de norme -1 de Q(√p) et corps de classes de degré 8 de Q(√-p) où p est un nombre premier congru à 1 modulo 8, Acta Arith. 32 (1977), 239-243. | Zbl 0357.12010
[012] [13] --, Sur le 2-groupe des classes d'idéaux des corps quadratiques, J. Reine Angew. Math. 284 (1976), 313-363. | Zbl 0337.12003
[013] [14] E. Lehmer, On the quadratic character of some quadratic surds, J. Reine Angew. Math. 250 (1971), 42-48. | Zbl 0222.12007
[014] [15] R. Pioui, Mesures de Haar p-adiques et interprétation arithmétique de 1/2 L₂(χ,s) - 1/2 L₂(χ,t), s,t∈ ℚ₂ (χ quadratique), Ph.D. thesis, Université de Franche-Comté, Besançon 1990.
[015] [16] A. Pizer, On the 2-part of the class number of imaginary quadratic number fields, J. Number Theory 8 (1976), 184-192. | Zbl 0329.12003
[016] [17] L. Rédei, Ein neues zahlentheoretisches Symbol mit Anwendungen auf die Theorie der quadratischen Zahlkörper. I, J. Reine Angew. Math. 180 (1939), 1-43. | Zbl 0021.00701
[017] [18] J. Rogawski and J. Tunnell, On Artin L-functions associated to Hilbert modular forms of weight one , Invent. Math. 74 (1983), 1-42. | Zbl 0523.12009
[018] [19] J.-P. Serre, Modular forms of weight one and Galois representations, in: Algebraic Number Fields, Academic Press, London 1977, 193-268.
[019] [20] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), 637-679. | Zbl 0394.10015
[020] [21] P. Stevenhagen, Class groups and governing fields, Ph.D. thesis, University of California at Berkeley, 1988. | Zbl 0701.11056
[021] [22] T. Uehara, On linear congruence relations between class numbers of quadratic fields, J. Number Theory 34 (1990), 362-392. | Zbl 0693.12006
[022] [23] L. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer, 1982.
[023] [24] K. S. Williams, On the class number of Q(√-p) modulo 16, for p≡ 1(mod 8) a prime , Acta Arith. 39 (1981), 381-398. | Zbl 0393.12008