In this paper, we give transcendental numbers φ and ψ such that (i) both φ and ψ have explicit g-adic expansions, and simultaneously, (ii) the vector has an explicit expression in the Jacobi-Perron algorithm (cf. Theorem 1). Our results can be regarded as a higher-dimensional version of some of the results in [1]-[5] (see also [6]-[8], [10], [11]). The numbers φ and ψ have some connection with algebraic numbers with minimal polynomials x³ - kx² - lx - 1 satisfying (1.1) k ≥ l ≥0, k + l ≥ 2 (k,l ∈ ℤ). In the special case k = l = 1, our Theorems 1-3 have been shown in [15] by a different method using the theory of representation of numbers by Fibonacci numbers of third degree.
@article{bwmeta1.element.bwnjournal-article-aav61i1p51bwm, author = {Jun-ichi Tamura}, title = {A class of transcendental numbers with explicit g-adic expansion and the Jacobi-Perron algorithm}, journal = {Acta Arithmetica}, volume = {62}, year = {1992}, pages = {51-67}, zbl = {0747.11029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav61i1p51bwm} }
Jun-ichi Tamura. A class of transcendental numbers with explicit g-adic expansion and the Jacobi-Perron algorithm. Acta Arithmetica, Tome 62 (1992) pp. 51-67. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav61i1p51bwm/
[000] [1] W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198. | Zbl 0366.10027
[001] [2] P. E. Böhmer, Über die Transzendenz gewisser dyadischer Brüche, Math. Ann. 96 (1927), 367-377; Berichtigung, Proc. Amer. Math. Soc. 735. | Zbl 52.0188.02
[002] [3] P. Bundschuh, Über eine Klasse reeller transzendenter Zahlen mit explizit angebbarer g-adischer und Kettenbruch-Entwicklung, J. Reine Angew. Math. 318 (1980), 110-119. | Zbl 0425.10038
[003] [4] L. V. Danilov, Some classes of transcendental numbers, Mat. Zametki 12 (2) (1972), 149-154 (in Russian); English transl.: Math. Notes 12 (1972), 524-527.
[004] [5] J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc. 63 (1977), 29-32. | Zbl 0326.10030
[005] [6] J. H. Loxton and A. J. van der Poorten, Arithmetic properties of certain functions in several variables, III, Bull. Austral. Math. Soc. 16 (1977), 15-47. | Zbl 0339.10028
[006] [7] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366. | Zbl 55.0115.01
[007] [8] D. Masser, A vanishing theorem for power series, Invent. Math. 67 (1982), 275-296. | Zbl 0481.10034
[008] [9] E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Nauka, Moscow 1988, 168-175 (in Russian).
[009] [10] K. Nishioka, Evertse theorem in algebraic independence, Arch. Math. (Basel) 53 (1989), 159-170. | Zbl 0676.10024
[010] [11] K. Nishioka, I. Shiokawa and J. Tamura, Arithmetical properties of certain power series, J. Number Theory, to appear. | Zbl 0770.11039
[011] [12] V. I. Parusnikov, The Jacobi-Perron algorithm and simultaneous approximation of functions, Mat. Sb. 114 (156) (2) (1981), 322-333 (in Russian). | Zbl 0461.30003
[012] [13] A. Salomaa, Jewels of Formal Language Theory, Pitman, 1981. | Zbl 0487.68063
[013] [14] A. Salomaa, Computation and Automata, Cambridge Univ. Press, 1985. | Zbl 0565.68046
[014] [15] J. Tamura, Transcendental numbers having explicit g-adic and Jacobi-Perron expansions, in: Séminaire de Théorie des Nombres de Bordeaux, to appear. | Zbl 0763.11029