The divisor problem for arithmetic progressions with small modulus
Charles E. Chace
Acta Arithmetica, Tome 62 (1992), p. 35-50 / Harvested from The Polish Digital Mathematics Library
Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:206450
@article{bwmeta1.element.bwnjournal-article-aav61i1p35bwm,
     author = {Charles E. Chace},
     title = {The divisor problem for arithmetic progressions with small modulus},
     journal = {Acta Arithmetica},
     volume = {62},
     year = {1992},
     pages = {35-50},
     zbl = {0726.11056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav61i1p35bwm}
}
Charles E. Chace. The divisor problem for arithmetic progressions with small modulus. Acta Arithmetica, Tome 62 (1992) pp. 35-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav61i1p35bwm/

[000] [C] C. E. Chace, Writing integers as sums of products, doctoral dissertation, Colum- bia University, 1990.

[001] [FI1] J. B. Friedlander and H. Iwaniec, The divisor problem for arithmetic progressions, Acta Arith. 45 (1985), 273-277. | Zbl 0572.10033

[002] [FI2] J. B. Friedlander and H. Iwaniec, Incomplete Kloosterman sums and a divisor problem, Ann. of Math. 121 (1985), 319-350. | Zbl 0572.10029

[003] [H1] D. R. Heath-Brown, Hybrid bounds for Dirichlet L-functions, Invent. Math. 47 (1978), 149-170. | Zbl 0362.10035

[004] [H2] D. R. Heath-Brown, The fourth power moment of the Riemann zeta function, Proc. London Math. Soc. (3) 38 (1979), 385-422. | Zbl 0403.10018

[005] [H3] D. R. Heath-Brown, The divisor function d₃(n) in arithmetic progressions, Acta Arith. 47 (1987), 29-56.

[006] [K] H. G. Kopetzky, Über die Größ enordnung der Teilerfunktion in Restklassen, Monatsh. Math. 82 (1976), 287-295. | Zbl 0347.10036

[007] [L1] A. F. Lavrik, A functional equation for Dirichlet L-series and the problem of divisors in arithmetic progressions, Amer. Math. Soc. Transl. (2) 82 (1969), 47-65. | Zbl 0188.34801

[008] [L2] A. F. Lavrik, On the principal term in the divisor problem and the power series of the Riemann zeta-function in a neighborhood of its pole, English transl. in Proc. Steklov Inst. Math. 1979, no. 3, 175-183.

[009] [Ma] K. Matsumoto, A remark on Smith's result on a divisor problem in arithmetic progressions, Nagoya Math. J. 98 (1985), 37-42. | Zbl 0545.10032

[010] [Mn] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, 1971.

[011] [Mo] Y. Motohashi, An asymptotic series for an additive divisor problem, Math. Z. 170 (1980), 43-63. | Zbl 0411.10021

[012] [N] W. G. Nowak, On the divisor problem in arithmetic progressions, Comment. Math. Univ. St. Pauli 33 (1984), 209-217. | Zbl 0512.10035

[013] [P] M. M. Petečuk, The sum of values of the divisor function in arithmetic progressions whose difference is a power of an odd prime, Math. USSR-Izv. 15 (1980), 145-160.

[014] [S] R. A. Smith, The generalized divisor problem over arithmetic progressions, Math. Ann. 260 (1982), 255-268. | Zbl 0467.10034

[015] [T] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed. revised by D. R. Heath-Brown, Clarendon Press, Oxford 1986. | Zbl 0601.10026