The imaginary quadratic fields of class number 4
Steven Arno
Acta Arithmetica, Tome 62 (1992), p. 321-334 / Harvested from The Polish Digital Mathematics Library
Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:206441
@article{bwmeta1.element.bwnjournal-article-aav60i4p321bwm,
     author = {Steven Arno},
     title = {The imaginary quadratic fields of class number 4},
     journal = {Acta Arithmetica},
     volume = {62},
     year = {1992},
     pages = {321-334},
     zbl = {0760.11033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav60i4p321bwm}
}
Steven Arno. The imaginary quadratic fields of class number 4. Acta Arithmetica, Tome 62 (1992) pp. 321-334. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav60i4p321bwm/

[000] [1] N. C. Ankeny, The least quadratic non residue, Ann. of Math. (2) 55 (1952), 65-72. | Zbl 0046.04006

[001] [2] A. Baker, A remark on the class number of quadratic fields, Bull. London Math. Soc. 1 (1966), 98-102.

[002] [3] A. Baker, Imaginary quadratic fields of class number 2, Ann. of Math. 94 (1971), 139-152.

[003] [4] P. T. Bateman and E. Grosswald, Positive integers expressible as a sum of 3 squares in essentially only one way, J. Number Theory 19 (1984), 301-308. | Zbl 0558.10038

[004] [5] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York 1966.

[005] [6] D. A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp. 31 (1977), 786-796. | Zbl 0379.12001

[006] [7] P. Chowla and A. Selberg, On Epstein's zeta function, J. Reine Angew. Math. 227 (1967), 86-110. | Zbl 0166.05204

[007] [8] H. Davenport, Multiplicative Number Theory, 2nd ed., Graduate Texts in Math. 74, Springer, New York 1980. | Zbl 0453.10002

[008] [9] C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function, Royal Society Math. Tables, Vol. 6, Cambridge 1960. | Zbl 0095.12001

[009] [10] H. Heilbronn, On the class number in imaginary quadratic fields, Quart. J. Math. Oxford Ser. 25 (1934), 150-160. | Zbl 0009.29602

[010] [11] C. F. Gauss, Disquisitiones Arithmeticae, Yale Univ. Press, 1966.

[011] [12] D. M. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa (4) 3 (1976), 623-663. | Zbl 0345.12007

[012] [13] B. Gross et D. Zagier, Points de Heegner et derivées de fonctions L, C. R. Acad. Sci. Paris 297 (1983), 85-87.

[013] [14] D. H. Lehmer, E. Lehmer, and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp. 24 (1970), 433-451. | Zbl 0203.35301

[014] [15] H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, Acta Arith. 24 (1974), 529-542. | Zbl 0285.12004

[015] [16] L. J. Mordell, On the rational solutions of the indeterminate equations of the 3rd and 4rth degrees, Proc. Cambridge Philos. Soc. 21 (1922), 179-192.

[016] [17] J. Oesterlé, Nombres de classes des corps quadratiques imaginaires, Sém. Bourbaki, 1983-1984, exp. 631.

[017] [18] H. M. Stark, A complete determination of the complex quadratic fields of class number 1, Michigan Math. J. 14 (1967), 1-27. | Zbl 0148.27802

[018] [19] H. M. Stark, On complex quadratic fields with class number two, Math. Comp. 29 (1975), 289-302. | Zbl 0321.12009

[019] [20] H. M. Stark, L-functions and character sums for quadratic forms (II), Acta Arith. 15 (1969), 307-317.

[020] [21] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford Univ. Press, London 1951. | Zbl 0042.07901