Effective finiteness theorems for decomposable forms of given discriminant
J. H. Evertse ; K. Győry
Acta Arithmetica, Tome 62 (1992), p. 233-277 / Harvested from The Polish Digital Mathematics Library
Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:206437
@article{bwmeta1.element.bwnjournal-article-aav60i3p233bwm,
     author = {J. H. Evertse and K. Gy\H ory},
     title = {Effective finiteness theorems for decomposable forms of given discriminant},
     journal = {Acta Arithmetica},
     volume = {62},
     year = {1992},
     pages = {233-277},
     zbl = {0746.11019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav60i3p233bwm}
}
J. H. Evertse; K. Győry. Effective finiteness theorems for decomposable forms of given discriminant. Acta Arithmetica, Tome 62 (1992) pp. 233-277. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav60i3p233bwm/

[000] [1] B. J. Birch and J. R. Merriman, Finiteness theorems for binary forms with given discriminant, Proc. London Math. Soc. 25 (1972), 385-394. | Zbl 0248.12002

[001] [2] Z. I. Borevich and I. R. Shafarevich, Number Theory, 2nd ed., Academic Press, New York and London 1967.

[002] [3] J. H. Evertse, Decomposable form equations with a small linear scattering, to appear. | Zbl 0754.11009

[003] [4] J. H. Evertse and K. Győry, Decomposable form equations, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge University Press, 1988, 175-202.

[004] [5] J. H. Evertse and K. Győry, Thue-Mahler equations with a small number of solutions, J. Reine Angew. Math. 399 (1989), 60-80. | Zbl 0675.10009

[005] [6] J. H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant, Compositio Math. 79 (1991), 169-204. | Zbl 0746.11020

[006] [7] J. H. Evertse, K. Győry, C. L. Stewart and R. Tijdeman, S-unit equations and their applications, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge University Press, 1988, 110-174. | Zbl 0658.10023

[007] [8] K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith. 23 (1973), 419-426. | Zbl 0269.12001

[008] [9] K. Győry, On polynomials with integer coefficients and given discriminant, V, p-adic generalizations, Acta Math. Acad. Sci. Hungar. 32 (1978), 175-190. | Zbl 0402.10053

[009] [10] K. Győry, On the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helv. 54 (1979), 583-600. | Zbl 0437.12004

[010] [11] K. Győry, On S-integral solutions of norm form, discriminant form and index form equations, Studia Sci. Math. Hungar. 16 (1981), 149-161. | Zbl 0518.10019

[011] [12] K. Győry, Effective finiteness theorems for polynomials with given discriminant and integral elements with given discriminant over finitely generated domains, J. Reine Angew. Math. 346 (1984), 54-100. | Zbl 0519.13008

[012] [13] G. J. Janusz, Algebraic Number Fields, Academic Press, New York and London 1973. | Zbl 0307.12001

[013] [14] I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. 72 (1952), 327-340. | Zbl 0046.25701

[014] [15] S. Lang, Algebraic Number Theory, Springer, 1970. | Zbl 0211.38404

[015] [16] K. Mahler, Über die Annäherung algebraischer Zahlen durch periodische Algorithmen, Acta Math. 68 (1937), 109-144. | Zbl 0017.05701

[016] [17] T. Nagell, Contributions à la théorie des modules et des anneaux algébriques, Ark. Mat. 6 (1965), 161-178. | Zbl 0132.28304

[017] [18] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Polish Scientific Publishers, Warszawa 1974. | Zbl 0276.12002

[018] [19] H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135-152. | Zbl 0278.12005

[019] [20] O. Zariski and P. Samuel, Commutative Algebra, Vol. I, D. Van Nostrand Co., Toronto-New York-London 1958.